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Abstract. We consider the family of approximate deconvolution models (ADM) for the sim-
ulation of the large eddies in turbulent viscous, incompressible, electrically conducting flows. We
prove existence and uniqueness of solutions, we prove that the solutions to the ADM-MHD equa-
tions converge to the solution of the MHD equations in a weak sense as the averaging radii converge
to zero, and we derive a bound on the modeling error. We prove that the energy and helicity of
the models are conserved, and the models preserve the Alfvén waves. We provide the results of the
computational tests, that verify the accuracy and physical fidelity of the models.
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1. Introduction.
Magnetically conducting fluids arise in important applications including climate

change forecasting, plasma confinement, controlled thermonuclear fusion, liquid-metal
cooling of nuclear reactors, electromagnetic casting of metals, MHD sea water propul-
sion. In many of these, turbulent MHD (magnetohydrodynamics [2]) flows are typical.
The difficulties of accurately modeling and simulating turbulent flows are magnified
many times over in the MHD case. They are evinced by the more complex dynam-
ics of the flow due to the coupling of Navier-Stokes and Maxwell equations via the
Lorentz force and Ohm’s law.

The flow of an electrically conducting fluid is affected by Lorentz forces, induced
by the interaction of electric currents and magnetic fields in the fluid. The Lorentz
forces can be used to control the flow and to attain specific engineering design goals
such as flow stabilization, suppression or delay of flow separation, reduction of near-
wall turbulence and skin friction, drag reduction and thrust generation. There is a
large body of literature dedicated to both experimental and theoretical investigations
on the influence of electromagnetic force on flows (see e.g., [19, 27, 28, 18, 39, 14, 40,
20, 35, 7]). The MHD effects arising from the macroscopic interaction of liquid metals
with applied currents and magnetic fields are exploited in metallurgical processes
to control the flow of metallic melts: the electromagnetic stirring of molten metals
[29], electromagnetic turbulence control in induction furnaces [41], electromagnetic
damping of buoyancy-driven flow during solidification [30], and the electromagnetic
shaping of ingots in continuous casting [32].

Direct numerical simulation of a 3d turbulent flow is often not computationally
economical or even feasible. On the other hand, the largest structures in the flow
(containing most of the flow’s energy) are responsible for much of the mixing and most
of the flow’s momentum transport. This led to various numerical regularizations; one
of these is Large Eddy Simulation (LES) [31], [21], [8]. It is based on the idea that
the flow can be represented by a collection of scales with different sizes, and instead
of trying to approximate all of them down to the smallest one, one defines a filter
width δ > 0 and computes only the scales of size bigger than δ (large scales), while
the effect of the small scales on the large scales is modeled. This reduces the number
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of degrees of freedom in a simulation and represents accurately the large structures
in the flow.

In [22] we considered the problem of modeling the motion of large structures in
a viscous, incompressible, electrically conducting, turbulent fluid. We introduced a
simple closed LES model, and performed full numerical analysis. This model can
be also addressed as zeroth order Approximate Deconvolution Model - referring to
the family of models, introduced in [1]. In this report we consider the family of the
Approximate Deconvolution models for MagnetoHydroDynamics (ADM for MHD);
we perform the numerical analysis of the models and also verify their physical fidelity.

The mathematical description of the problem proceeds as follows. Assuming the
fluid to be viscous and incompressible, the governing equations are the Navier- Stokes
and pre-Maxwell equations, coupled via the Lorentz force and Ohm’s law (see e.g.
[34]). Let Ω = (0, L)3 be the flow domain, and u(t, x), p(t, x), B(t, x) be the velocity,
pressure, and the magnetic field of the flow, driven by the velocity body force f and
magnetic field force curl g. Then u, p, B satisfy the MHD equations:

ut +∇ · (uuT )− 1
Re

∆u +
S

2
∇(B2)− S∇ · (BBT ) +∇p = f,

Bt +
1

Rem
curl(curl B) + curl (B × u) = curl g,

∇ · u = 0,∇ ·B = 0,

(1.1)

in Q = (0, T )× Ω, with the initial data:

u(0, x) = u0(x), B(0, x) = B0(x) in Ω, (1.2)

and with periodic boundary conditions (with zero mean):

Φ(t, x + Lei) = Φ(t, x), i = 1, 2, 3,

∫

Ω

Φ(t, x)dx = 0, (1.3)

for Φ = u, u0, p, B,B0, f, g.
Here Re, Rem, and S are nondimensional constants that characterize the flow:

the Reynolds number, the magnetic Reynolds number and the coupling number, re-
spectively. For derivation of (1.1), physical interpretation and mathematical analysis,
see [10, 23, 33, 17] and the references therein.

If aδ1 , aδ2 denote two local, spacing averaging operators that commute with the
differentiation, then averaging (1.1) gives the following non-closed equations for uδ1 ,

B
δ2

, pδ1 in (0, T )× Ω:

uδ1
t +∇ · (uuT

δ1
)− 1

Re
∆uδ1 − S∇ · (BBT

δ1
) +∇

(S

2
B2

δ1 + pδ1

)
= f

δ1
,

B
δ2

t +
1

Rem
curl(curl B

δ2) +∇ · (BuT
δ2

)−∇ · (uBT
δ2

) = curl gδ2 ,

∇ · uδ2 = 0, ∇ ·Bδ2 = 0.

(1.4)

The usual closure problem which we study here arises because uuT
δ1 6= uδ1 uδ1 ,

BBT
δ1 6= B

δ1
B

δ1 , uBT
δ2 6= uδ1 BT

δ2
. To isolate the turbulence closure problem

from the difficult problem of wall laws for near wall turbulence, we study (1.1) hence
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(1.4) subject to (1.3). The closure problem is to replace the tensors uuT
δ1

, BBT
δ1

,

uBT
δ2

with tensors T (uδ1 , uδ1), T (B
δ2

, B
δ2), T (uδ1 , B

δ2), respectively, depending
only on uδ1 , B

δ2 and not u,B. There are many closure models proposed in large
eddy simulation reflecting the centrality of closure in turbulence simulation. Calling
w, q,W the resulting approximations to uδ1 , pδ1 , B

δ2 , we are led to considering the
following model

wt +∇ ·T (w, w)− 1
Re

∆w − ST (W,W ) +∇q = f
δ1

Wt +
1

Rem
curl(curl W ) +∇ ·T (w, W )−∇ ·T (W,w) = curl gδ2 ,

∇ · w = 0, ∇ ·W = 0.

(1.5)

With any reasonable averaging operator, the true averages uδ1 , B
δ2

, pδ1 are smoother
than u,B, p. We consider the family of closure models, pioneered by Stolz and Adams
[1]. These Approximate Deconvolution Models (ADM) use the deconvolution opera-
tors G1

N and G2
N , that will be defined in Section 2. The ADM for the MHD reads

wt +∇ · (G1
Nw)(G1

Nw)T
δ1

− 1
Re

∆w − S∇ · (G2
NW ) (G2

NW )T
δ1

+∇q = f
δ1

, (1.6a)

Wt +
1

Rem
curl(curl W ) +∇ · ((G2

NW )(G1
Nw)T

δ2
)−∇ · ((G1

Nw)(G2
NW )T

δ2
) (1.6b)

= curl gδ2 ,

∇ · w = 0, ∇ ·W = 0, (1.6c)

subject to w(x, 0) = uδ1
0 (x),W (x, 0) = B

δ2

0 (x) and periodic boundary conditions (with
zero means).

We shall show that the ADM MHD model (1.6) has the mathematical properties
which are expected of a model derived from the MHD equations by an averaging
operation and which are important for practical computations using (1.6). Note also,
that the case N = 0 in (1.6) leads to the model discussed in [22].

The model considered can be developed for quite general averaging operators, see
e.g. [1]. The choice of averaging operator in (1.6) is a differential filter, defined as fol-
lows. Let the δ > 0 denote the averaging radius, related to the finest computationally
feasible mesh. (In this report we use different lengthscales for the Navier-Stokes and
Maxwell equations). Given φ ∈ L2

0(Ω), φ
δ ∈ H2(Ω) ∩ L2

0(Ω) is the unique solution of

Aδφ
δ

:= −δ2∆φ
δ
+ φ

δ
= φ in Ω, (1.7)

subject to periodic boundary conditions. Under periodic boundary conditions, this
averaging operator commutes with differentiation, and with this averaging operator,
the model (1.6) has consistency O(δ2), i.e.,

uuT
δ1

= uδ1 uT
δ1

+ O(δ1
2),

BBT
δ1

= B
δ2

BT
δ2

δ1

+ O(δ2
2),

uBT
δ2

= uδ1 BT
δ2

δ2

+ O(δ1
2 + δ2

2),
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for smooth u, B. We prove that the model (1.6) has a unique, weak solution w,W
that converges in the appropriate sense w → u, W → B, as δ1, δ2 → 0.

In Section 2 we prove the global existence and uniqueness of the solution for the
closed MHD model, after giving the notations and a definition. Section 3 treats the
questions of limit consistency of the model and verifiability. The conservation of the
kinetic energy and helicity for the approximate deconvolution model is presented in
Section 4. Section 5 shows that the model preserves the Alfén waves, with the velocity
tending to the velocity of Alfvén waves in the MHD, as the radii δ1, δ2 tend to zero.
Extensive computational results, demonstrated in Section 6, verify the accuracy of
the models and the physical fidelity.

2. Existence and uniqueness for the MHD LES equations.

2.1. Notations and preliminaries. Introduce the family of the approximate
deconvolution operators G1

N , G2
N , that are used in the ADM models (1.6).

Definition 2.1 (Approximate Deconvolution Operator). For a fixed finite N ,
define the N th approximate deconvolution operators G1

N and G2
N by

Gi
Nφ =

N∑
n=0

(I −A−1
δi

)nφ, for i = 1, 2.

Note that since the differential filter Aδi is self adjoint, Gi
N is also. Gi

N was shown
to be an O(δ2N+2

i ) approximate inverse to the filter operator A−1
δi

(see [12]). Finally,
it is easy to show that since Aδi commutes with differentiation, so does Gi

N .
Corollary 2.2. Gi

N is compact, positive, and is an asymptotic inverse to the
filter A−1

δi
: for very smooth φ and as δi → 0

φ = G1
Nφ

δ1 + (−1)N+1δ2N+2
1 ∆N+1A

−(N+1)
δ1

φ, (2.1)

φ = G2
Nφ

δ2 + (−1)N+1δ2N+2
2 ∆N+1A

−(N+1)
δ2

φ.

The proof of Corollary 2.2 can be found in [12] (Lemma 2.1).
Lemma 2.3. Let i = 1, 2. ‖ · ‖Gi

N
defined by ‖v‖Gi

N
= (v, Gi

Nv) is a norm on
Ω, equivalent to the L2(Ω) norm, and (·, ·)Gi

N
defined by (v, w)Gi

N
= (v, Gi

Nw) is an
inner product on Ω.

For the proof see [8].
We shall use the standard notations for function spaces in the space periodic

case (see [38]). Let Hm
p (Ω) denote the space of functions (and their vector valued

counterparts also) that are locally in Hm(R3), are periodic of period L and have zero
mean, i.e. satisfy (1.3). We recall the solenoidal space

D(Ω) = {φ ∈ C∞(Ω) : φ periodic with zero mean,∇ · φ = 0},
and the closures of D(Ω) in the usual L2(Ω) and H1(Ω) norms :

H = {φ ∈ H0
2 (Ω),∇ · φ = 0 in D(Ω)′}2,

V = {φ ∈ H1
2 (Ω),∇ · φ = 0 in D(Ω)′}2.

We define the operator A ∈ L (V, V ′) by setting

〈A (w1,W1), (w2,W2)〉 =
∫

Ω

(
1

Re
∇w1 · ∇w2 +

S

Rem
curl W1curl W2

)
dx, (2.2)
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for all (wi, Wi) ∈ V . The operator A is an unbounded operator on H, with the
domain D(A ) = {(w, W ) ∈ V ; (∆w, ∆W ) ∈ H} and we denote again by A its
restriction to H.
We define also a continuous tri-linear form B0 on V × V × V by setting

B0((w1,W1), (w2,W2), (w3,W3)) =
∫

Ω

(
∇ · (w2wT

1

δ1
)w3 (2.3)

−S∇ · (W2WT
1

δ1
) w3 +∇ · (W2wT

1

δ2
)W3 −∇ · (w2WT

1

δ2
) W3

)
dx

and a continuous bilinear operator B(·) : V → V with

〈B(w1,W1), (w2,W2)〉 = B0((w1,W1), (w1,W1), (w2,W2))

for all (wi,Wi) ∈ V .
The following properties of the trilinear form B0 hold (see [26, 33, 16, 13])

B0((w1, W1), (w2,W2), (Aδ1w2, SAδ2W2)) = 0,

B0((w1, W1), (w2,W2), (Aδ1w3, SAδ2W3))
= −B0((w1, W1), (w3,W3), (Aδ1w2, SAδ2W2)),

(2.4)

for all (wi,Wi) ∈ V . Also

|B0((w1,W1), (w2,W2), (w3,W3))| (2.5)

≤ C‖(w1,W1)‖m1‖(w2, W2)‖m2+1‖(w3
δ1 , W3

δ2)‖m3

for all (w1, W1) ∈ Hm1(Ω), (w2,W2) ∈ Hm2+1(Ω), (w3, W3) ∈ Hm3(Ω) and

m1 + m2 + m3 ≥ d

2
, if mi 6= d

2
for all i = 1, . . . , d,

m1 + m2 + m3 >
d

2
, if mi =

d

2
for any of i = 1, . . . , d.

In terms of V, H, A ,B(·) we can rewrite (1.6) as

d

dt
(w,W ) + A (w,W )(t) + B((w, W )(t)) = (f

δ1
, curl gδ2), t ∈ (0, T ),

(w, W )(0) = (uδ1
0 , B

δ2

0 ),
(2.6)

where (f , curl g) = P (f, curl g), and P : L2(Ω) → H is the Hodge projection.

Definition 2.4. Let (u0
δ1 , B0

δ2) ∈ H, f
δ1

, curl gδ2 ∈ L2(0, T ;V ′). The mea-
surable functions w, W : [0, T ] × Ω → R3 are the weak solutions of (2.6) if w,W ∈
L2(0, T ;V ) ∩ L∞(0, T ;H), and w, W satisfy
∫

Ω

w(t)φdx +
∫ t

0

∫

Ω

1
Re
∇w(τ)∇φ + w(τ) · ∇w(τ)

δ1
φ− SW (τ) · ∇W (τ)

δ1
φ dxdτ

=
∫

Ω

u0
δ1φdx +

∫ t

0

∫

Ω

f(τ)
δ1

φdxdτ, (2.7)
∫

Ω

W (t)ψdx +
∫ t

0

∫

Ω

1
Rem

∇W (τ)∇ψ + w(τ) · ∇W (τ)
δ2

ψ −W (τ) · ∇w(τ)
δ2

ψ dxdτ

=
∫

Ω

B0
δ2

ψdx +
∫ t

0

∫

Ω

curl g(τ)
δ2

ψ dxdτ,
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∀t ∈ [0, T ), φ, ψ ∈ D(Ω).
Also, it is easy to show that for any u, v ∈ H1(Ω) with ∇ · u = ∇ · v = 0, the

following identity holds

∇× (u× v) = v · ∇u− u · ∇v. (2.8)

2.2. Stability and existence for the model. The first result states that the
weak solution of the MHD LES model (1.6) exists globally in time, for large data and
general Re,Rem > 0 and that it satisfies an energy equality while initial data and the
source terms are smooth enough.

Theorem 2.5. Let δ1, δ2 > 0 be fixed. For any (u0
δ1 , B0

δ2) ∈ V and (f
δ1
, curl gδ2)

∈ L2(0, T ;H), there exists a unique weak solution w,W to (1.6). The weak solu-
tion also belongs to L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) and wt,Wt ∈ L2((0, T )× Ω).
Moreover, the following energy equality holds for t ∈ [0, T ]:

M (t) +
∫ t

0

N (τ)dτ = M (0) +
∫ t

0

P(τ)dτ, (2.9)

where

M (t)=
δ1

2

2
‖∇w(t, ·)‖20 +

1
2
‖w(t, ·)‖20 +

δ2
2S

2
‖∇W (t, ·)‖20 +

S

2
‖W (t, ·)‖20,

N (t)=
δ1

2

Re
‖∆w(t, ·)‖20+

1
Re
‖∇w(t, ·)‖20+

δ2
2S

Rem
‖∆W (t, ·)‖20+

S

Rem
‖∇W (t, ·)‖20,

(2.10)

P(t)=(f(t), w(t)) + S(curl g(t),W (t)).

We shall use the semigroup approach proposed in [6] for the Navier-Stokes equa-
tions, based on the machinery of nonlinear differential equations of accretive type in
Banach spaces.

Let us define the modified nonlinearity BN (·) : V → V by setting

BN (w,W ) =

{
B(w,W ) if ‖(w, W )‖1 ≤ N,(

N
‖(w,W )‖1

)2

B(w, W ) if ‖(w, W )‖1 > N.
(2.11)

By (2.5) we have for the case of ‖(w1,W1)‖1, ‖(w2,W2)‖1 ≤ N

|〈BN (w1,W1)−BN (w2,W2), (w1 − w2, W1 −W2)〉|
= |B0((w1 − w2,W1 −W2), (w1,W1), (w1 − w2,W1 −W2)|

+ B0((w2,W2), (w1 − w2,W1 −W2), (w1 − w2, W1 −W2)|
≤ C‖(w1 − w2,W1 −W2)‖1/2‖(w1,W1)‖1‖(w1 − w2

δ1 , W1 −W2
δ2)‖1

≤ ν

2
‖(w1 − w2,W1 −W2)‖21 + CN‖(w1 − w2,W1 −W2)‖20,

where ν = inf{1/Re, S/Rem}.
6



In the case of ‖(wi,Wi)‖1 > N we have

|〈BN (w1,W1)−BN (w2,W2), (w1 − w2,W1 −W2)〉|

=
N2

‖(w1,W1)‖21
B0((w1 − w2,W1 −W2), (w1,W1), (w1 − w2,W1 −W2))

+
(

N2

‖(w1, W1)‖21
− N2

‖(w2,W2)‖21

)
B0((w2, W2), (w2,W2), (w1 − w2,W1 −W2))

≤ CN‖(w1 − w2, W1 −W2)‖3/2
1 ‖(w1 − w2,W1 −W2)‖1/2

0

+ CN‖(w1 − w2,W1 −W2)‖21
≤ ν

2
‖(w1 − w2,W1 −W2)‖21 + CN‖(w1 − w2,W1 −W2)‖20.

For the case of ‖(w1,W1)‖1 > N, ‖(w2,W2)‖1 ≤ N (similar estimates are obtained
when ‖(w1, W1)‖1 ≤ N, ‖(w2,W2)‖1 > N) we have

|〈BN (w1, W1)−BN (w2,W2), (w1 − w2,W1 −W2)〉|

=
N2

‖(w1,W1)‖21
B0((w1 − w2,W1 −W2), (w1,W1), (w1 − w2, W1 −W2))

−
(

1− N2

‖(w1, W1)‖21

)
B0((w2,W2), (w2,W2), (w1 − w2, W1 −W2))

≤ CN‖(w1 − w2,W1 −W2)‖3/2
1 ‖(w1 − w2,W1 −W2)‖1/2

0

+ CN‖(w1−w2,W1−W2)‖1‖(w1−w2,W1−W2)‖1/2

≤ ν

2
‖(w1 − w2,W1 −W2)‖21 + CN‖(w1 − w2,W1 −W2)‖20.

Combining all the cases above we conclude that

|〈BN (w1,W1)−BN (w2,W2), (w1 − w2,W1 −W2)〉| (2.12)

≤ ν

2
‖(w1 − w2,W1 −W2)‖21 + CN‖(w1 − w2,W1 −W2)‖20.

The operator BN is continuous from V to V ′. Indeed, as above we have (using (2.5)
with m1 = 1, m2 = 0, m3 = 1 )

|〈BN (w1, W1)−BN (w2,W2), (w3,W3)〉| (2.13)
≤ |B0 ((w1 − w2,W1 −W2), (w1,W1), (w3,W3))|

+ |B0 ((w2,W2), (w1 − w2,W1 −W2), (w3,W3))|
≤ CN‖(w1 − w2, W1 −W2)‖1‖(w3,W3)‖1.

Now consider the operator ΓN : D(ΓN ) → H defined by

ΓN = A + BN , D(ΓN ) = D(A ).

Here we used (2.5) with m1 = 1,m2 = 1/2,m3 = 0 and interpolation results (see e.g.
[15, 37, 13]) to show that

‖BN (w,W )‖0 ≤ C‖(w,W )‖3/2
1 ‖A (w, W )‖1/2

0 ≤ CN ‖A (w, W )‖1/2
0 . (2.14)
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Lemma 2.6. There exists αN > 0 such that ΓN + αNI is m-accretive (maximal
monotone) in H ×H.

Proof. By (2.12) we have that

((ΓN + λ)(w1, W1)− (ΓN + λ)(w2, W2), (w1 − w2,W1 −W2)) (2.15)

≥ ν

2
‖(w1 − w2,W1 −W2)‖21, for all (wi,Wi) ∈ D(ΓN ),

for λ ≥ CN . Next we consider the operator

FN (w,W ) = A (w, W ) + BN (w, W ) + αN (w, W ), for all (w,W ) ∈ D(FN ),

with

D(FN ) = {(w,W ) ∈ V ;A (w, W ) + BN (w,W ) ∈ H}.

By (2.13) and (2.15) we see that FN is monotone, coercive and continuous from V
to V ′. We infer that FN is maximal monotone from V to V ′ and the restriction to
H is maximal monotone on H with the domain D(FN ) ⊇ D(A ) (see e.g. [9, 4]).
Moreover, we have D(FN ) = D(A ). For this we use the perturbation theorem for
nonlinear m-accretive operators and split FN into a continuous and a ω-m-accretive
operator on H

F 1
N = (1− ε

2
)A , D(F 1

N ) = D(A ),

F 2
N =

ε

2
A + BN (·) + αNI, D(F 2

N ) = {(w,W ) ∈ V, F 2
N (w, W ) ∈ H}.

As seen above by (2.14) we have

∥∥F 2
N (w, W )

∥∥
0
≤ ε

2
‖A (w,W )‖0 + ‖BN (w, W )‖0 + αN‖(w, W )‖0

≤ ε‖A (w, W )‖0 + αN‖(w, W )‖0 +
C2

N

2ε
, for all (w, W ) ∈ D(F 1

N ) = D(A ),

where 0 < ε < 1.
Since F 1

N +F 2
N = ΓN +αNI we infer that ΓN +αNI with domain D(A ) is m-accretive

in H as claimed.
Proof. [Proof of Theorem 2.5] As a consequence of Lemma 2.6 (see, e.g., [4, 5]) we

have that for (u0
δ1 , B0

δ2) ∈ D(A ) and (f
δ1

, curl gδ2) ∈ W 1,1([0, T ],H) the equation

d

dt
(w, W ) + A (w, W )(t) + BN ((w, W )(t)) = (f

δ1
, curl gδ2), t ∈ (0, T ),

(w, W )(0) = (u0
δ1 , B0

δ2),
(2.16)

has a unique strong solution (wN ,WN ) ∈ W 1,∞([0, T ]; H) ∩ L∞(0, T ;D(A )).
By a density argument (see, e.g., [5, 26]) it can be shown that if (u0

δ1 , B0
δ2) ∈

H and (f
δ1

, curl gδ2) ∈ L2(0, T, V ′) then there exist absolute continuous functions
(wN ,WN ) : [0, T ] → V ′ that satisfy (wN ,WN ) ∈ C([0, T ]; H) ∩ L2(0, T : V ) ∩
W 1,2([0, T ], V ′) and (2.16) a.e. in (0, T ), where d/dt is considered in the strong
topology of V ′.
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First, we show that D(A ) is dense in H. Indeed, if (w,W ) ∈ H we set (wε,Wε) =
(I + εΓN )−1(w, W ), where I is the unity operator in H. Multiplying the equation

(wε,Wε) + εΓN (wε,Wε) = (w, W )

by (wε, Wε) it follows by (2.4), (2.12) that

‖(wε,Wε)‖20 + 2εν‖(wε,Wε)‖21 ≤ ‖(w, W )‖20
and by (2.11)

‖(wε − w,Wε −W )‖−1 = ε‖Γε(wε,Wε)‖−1 ≤ εN‖(wε,Wε)‖1/2
0 ‖(wε,Wε)‖1/2

1 .

Hence, {(wε,Wε)} is bounded in H and (wε,Wε) → (w, W ) in V ′ as ε → 0. Therefore,
(wε,Wε) ⇀ (w,W ) in H as ε → 0, which implies that D(ΓN ) is dense in H.

Secondly, let (u0
δ1 , B0

δ2) ∈ H and (f
δ1

, curl gδ2) ∈ L2(0, T, V ′). Then there are
sequences {(u0

δ1
n , B0

δ2

n )} ⊂ D(ΓN ), {(f δ1

n , curl gδ2
n )} ⊂ W 1,1([0, T ];H) such that

(u0
δ1
n , B0

δ2

n ) → (u0
δ1 , B0

δ2) in H,

(f
δ1

n , curl gδ2
n ) → (f

δ1
, curl gδ2) in L2(0, T ; V ′),

as n →∞. Let (wn
N ,Wn

N ) ∈ W 1,∞([0, T ]; H) be the solution to problem (2.16) where
(w, W )(0) = (u0

δ1
n , B0

δ2

n ) and (f
δ1

, curl gδ2) = (f
δ1

n , curl gδ2
n ). By (2.15) we have

d

dt
‖(wn

N − wm
N ,Wn

N −Wm
N )‖20 +

ν

2
‖(wn

N − wm
N ,Wn

N −Wm
N )‖21

≤ 2CN‖(wn
N − wm

N ,Wn
N −Wm

N )‖20 +
2
ν
‖(f δ1

n − f
δ1

m , curl(gδ2
n − gδ2

m))‖2−1,

for a.e. t ∈ (0, T ). By the Gronwall inequality we obtain

‖(wn
N − wm

N ,Wn
N −Wm

N )(t)‖20 ≤ e2CN t‖(u0
δ1
n − u0

δ1
m , B0

δ2

n −B0
δ2

m)‖20
+

2e2CN t

ν

∫ t

0

‖(f δ1

n − f
δ1

m , curl(gδ2
n − gδ2

m))(τ)‖2−1dτ.

Hence

(wN (t),WN (t)) = lim
n→∞

(wn
N (t),Wn

N (t))

exists in H uniformly in t on [0, T ]. Similarly we obtain

‖wn
N (t)‖20 + ‖Wn

N (t)‖20 +
∫ t

0

(
1

Re
(‖∇wn

N (s)‖20 +
S

Rem
(‖curl Wn

N (s)‖20
)

ds

≤ CN

[
‖u0

δ1
n ‖20 + ‖B0

δ2

n ‖20 +
∫ t

0

(
‖f δ1

n (s)‖2−1 + ‖curl gδ2
n (s)‖2−1

)
ds

]
,

and
∫ T

0

∥∥∥∥
d

dt
(wn

N ,Wn
N )(t)

∥∥∥∥
2

−1

dt

≤ CN

[
‖u0

δ1
n ‖20 + ‖B0

δ2

n ‖20 +
∫ t

0

(
‖f δ1

n (s)‖2−1 + ‖curl gδ2
n (s)‖2−1

)
ds

]
.
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Hence on a sequence we have

(wn
N ,Wn

N ) → (wN , WN ) weakly in L2(0, T ;V ),
d

dt
(wn

N ,Wn
N ) → d

dt
(wN ,WN ) weakly in L2(0, T ; V ′),

where d(wN ,WN )/dt is considered in the sense of V ′-valued distributions on (0, T ).
We proved that (wN ,WN ) ∈ C([0, T ]; H) ∩ L2(0, T ; V ) ∩W 1,2([0, T ];V ′).

It remains to prove that (wN ,WN ) satisfies the equation (2.16) a.e. on (0, T ).
Let (w, W ) ∈ V be arbitrary but fixed. We multiply the equation

d

dt
(wn

N ,Wn
N ) + ΓN (wn

N ,Wn
N ) = (f

δ1

n , curl gδ2
n ), a.e. t ∈ (0, T ),

by (wn
N − w, Wn

N −W ), integrate on (s, t) and get

1
2

(
‖(wn

N (t),Wn
N (t))− (w, W )‖20 − ‖(wn

N (s),Wn
N (s))− (w,W )‖20

)

≤
∫ t

s

〈(f δ1

n (τ), curl gδ2
n (τ))− ΓN (w,W ), (wn

N (τ), Wn
N (τ))− (w, W )〉dτ.

After we let n →∞ we get
〈

(wN (t),WN (t))− (wN (s),WN (s))
t− s

, (wN (s),WN (s))− (w,W )
〉

(2.17)

≤ 1
t− s

∫ t

s

〈(f δ1(τ), curl gδ2(τ))− ΓN (w, W ), (wN (τ),WN (τ))− (w,W )〉dτ.

Let t0 denote a point at which (wN ,WN ) is differentiable and

(f
δ1(t0), curl gδ2(t0)) = lim

h→0

1
h

∫ t0+h

t0

(f
δ1(h), curl gδ2(h))dh.

Then by (2.17) we have
〈

d(wN , WN )
dt

(t0)− (f
δ1

, curl gδ2)(t0) + ΓN (w, W ), (wN ,WN )(t0)− (w, W )
〉
≤ 0.

Since (w,W ) is arbitrary in V and ΓN is maximal monotone in V × V ′ we conclude
that

d(wN ,WN )
dt

(t0) + ΓN (wN ,WN )(t0) = (f
δ1

, curl gδ2)(t0).

If we multiply (2.16) by (Aδ1wN , SAδ2WN ), use (2.4) and integrate in time we
obtain

1
2

(‖wN (t)‖20 + S‖WN (t)‖20
)

+
δ1

2

2
‖∇wN (t)‖20 +

δ2
2S

2
‖curlWN (t)‖20

+
∫ t

0

(
1

Re
(‖∇wN (s)‖20 + δ1

2‖∆wN (s)‖20)

+
S

Rem
(‖curlWN (s)‖20 + δ2

2‖curl curl WN (s)‖20)
)

ds

=
1
2

(
‖u0

δ1‖20 + S‖B0
δ2‖20

)
+

δ1
2

2
‖∇u0

δ1‖20 +
δ2

2S

2
‖curl B0

δ2‖20

+
∫ t

0

(
‖fδ1(s)‖−1‖wN (s)‖1 + S‖curl gδ2(s)‖−1‖WN (s)‖1

)
ds.
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Using the Cauchy-Schwarz and Gronwall inequalities this implies

‖(wN , WN )(t)‖1 ≤ Cδ1,δ2 for all t ∈ (0, T ),

where Cδ1,δ2 is independent of N . In particular, for N sufficiently large it follows from
(2.11) that BN = B and (wN ,WN ) = (w, W ) is a solution to (1.6).

In the following we prove the uniqueness of the weak solution. Let (w1, W1) and
(w2,W2) be two solutions of the system (2.6) and set ϕ = w1 − w2, Φ = B1 − B2.
Thus (ϕ,Φ) is a solution to the problem

d

dt
(ϕ,Φ) + A (ϕ, Φ)(t) = −B((w1, W1)(t)) + B((w2,W2)(t)), t ∈ (0, T ),

(ϕ,Φ)(0) = (0, 0).

We take (Aδ1ϕ, SAδ2Φ) as test function, integrate in space, use the incompressibility
condition (2.4) and the estimate (2.5) to get

1
2

d

dt

(‖ϕ‖20 + δ1
2‖∇ϕ‖20 + S‖Φ‖20 + Sδ2

2‖∇Φ‖20
)

+
1

Re
(‖∇ϕ‖20 + δ2

1‖∆ϕ‖20
)

+
S

Rem

(‖∇Φ‖20 + δ2
2‖∆Φ‖20

)

= B0((ϕ,Φ), (w1,W1), (Aδ1ϕ, SAδ2Φ))

≤ C‖(w1, W1)‖0‖(ϕ,Φ)‖1/2
0 ‖(∇ϕ,∇Φ)‖3/2

0

≤ Cδ1,δ2‖(w1,W1)‖0
(‖ϕ‖20 + δ1

2‖∇ϕ‖20 + S‖Φ‖20 + Sδ2
2‖∇Φ‖20

)
.

Applying the Gronwall’s lemma we deduce that (ϕ,Φ) vanishes for all t ∈ [0, T ], and
hence the uniqueness of the solution.

Remark 2.1. The pressure is recovered from the weak solution via the classical
DeRham theorem (see [25]).

2.3. Regularity.
Theorem 2.7. Let m ∈ N, (u0, B0) ∈ V ∩ Hm−1(Ω) and (f, curl g) ∈ L2(0, T ;

Hm−1(Ω)). Then there exists a unique solution w, W, q to the equation (1.6) such that

(w, W ) ∈ L∞(0, T ; Hm+1(Ω)) ∩ L2(0, T ;Hm+2(Ω)),

q ∈ L2(0, T ; Hm(Ω)).

Proof. The result is already proved when m = 0 in Theorem 2.5. For any m ∈ N∗,
we assume that

(w, W ) ∈ L∞(0, T ;Hm(Ω)) ∩ L2(0, T ;Hm+1(Ω)) (2.18)

so it remains to prove

(Dmw,DmW ) ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)),
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where Dm denotes any partial derivative of total order m. We take the mth derivative
of (1.6) and have

(Dmw)t − 1
Re

∆(Dmw) + Dm(w · ∇w)
δ1 − SDm(W · ∇W )

δ1 = Dmf
δ1

,

(DmW )t +
1

Rem
∇×∇× (DmW ) + Dm(w · ∇W )

δ2 −Dm(W · ∇w)
δ2 = ∇×Dmg

δ2
,

∇ · (Dmw) = 0,∇ · (DmW ) = 0,

Dmw(0, ·) = Dmu0
δ1 , DmW (0, ·) = DmB0

δ2
,

with periodic boundary conditions and zero mean, and the initial conditions with zero
divergence and mean. Taking Aδ1D

mw,Aδ1D
mW as test functions we obtain

1
2

d

dt

(‖Dmw‖20 + δ1
2‖∇Dmw‖20 + S‖DmW‖20 + Sδ2

2‖∇DmW‖20
)

(2.19)

+
1

Re
(‖∇Dmw‖20 + δ2

1‖∆Dmw‖20
)

+
1

Rem

(‖∇DmW‖20 + δ2
2‖∆DmW‖20

)

=
∫

Ω

(DmfDmw +∇× gDmW ) dx−X ,

where

X =
∫

Ω

(
Dm(w ·∇w)−SDm(W ·∇W )

)
Dmw +

(
Dm(w ·∇W )−Dm(W ·∇w)

)
DmWdx.

Now we apply (2.5) and use the induction assumption (2.18)

X =
∑

|α|≤m

(
m
α

) 3∑

i,j=1

∫

Ω

DαwiD
m−αDiwjD

mwj − SDαWiD
m−αDiWjD

mwj

−DαwiD
m−αDiWjD

mWj −DαWiD
m−αDiwjD

mWj

≤ ‖w‖3/2
m+1‖w‖1/2

m+2‖w‖m + ‖W‖3/2
m+1‖W‖1/2

m+2‖w‖m

+ ‖w‖m+1‖W‖1/2
m+1‖W‖1/2

m+2‖W‖m + ‖W‖3/2
m+1‖W‖1/2

m+2‖W‖m.

Integrating (2.19) on (0, T ), using the Cauchy-Schwarz and Hölder inequalities, and
the assumption (2.18) we obtain the desired result for w, W . We conclude the proof
mentioning that the regularity of the pressure term q is obtained via classical methods,
see e.g. [36, 3].

3. Accuracy of the model.
We will address first the question of consistency error, i.e., we show in Theorem

3.1 that the solution of the closed model (1.6) converges to a weak solution of the
MHD equations (1.1) when δ1, δ2 go to zero. This proves that the model is consistent
as δ1, δ2 → 0.
Let τu, τB , τBu denote the model’s consistency errors

τu = uδ1uδ1 − uu, τB = B
δ2

B
δ2 −BB, τBu = B

δ2
uδ1 −Bu, (3.1)

where u, B is a solution of the MHD equations obtained as a limit of a subsequence
of the sequence wδ1 ,Wδ2 .
We will also prove in Theorem 3.2 that ‖uδ1−w‖L∞(0,T ;L2(Q)), ‖Bδ2−W‖L∞(0,T ;L2(Q))

are bounded by ‖τu‖L2(QT ), ‖τB‖L2(QT ), ‖τBu‖L2(QT ).
12



3.1. Limit consistency of the model.
Theorem 3.1. There exist two sequences δn

1 , δn
2 → 0 as n → 0 such that

(wδn
1
,Wδn

2
, qδn

1
) → (u,B, p) as δn

1 , δn
2 → 0,

where (u,B, p) ∈ L∞(0, T ; H) ∩ L2(0, t; V ) × L
4
3 (0, T ; L2(Ω)) is a weak solution of

the MHD equations (1.1). The sequences {wδn
1
}n∈N, {Wδn

2
}n∈N converge strongly to

u,B in L
4
3 (0, T ; L2(Ω)) and weakly in L2(0, T ;H1(Ω)), respectively, while {qδn

1
}n∈N

converges weakly to p in L
4
3 (0, T ; L2(Ω)).

Proof. The proof follows that of Theorem 3.1 in [24], and is an easy consequence
of Theorem 3.2 and Proposition 3.4; we will sketch it for the reader’s convenience.

3.2. Verifiability of the model.
Theorem 3.2. Suppose that the true solution of (1.1) satisfies the regularity

condition (u,B) ∈ L4(0, T ; V ). Then e = uδ1 − w, E = B
δ2 −W satisfy

‖e(t)‖20 + S‖E(t)‖20 +
∫ t

0

(
1

Re
‖∇e(s)‖20 +

S

Rem
‖curlE(s)‖20

)
ds

≤ CΦ(t)
∫ t

0

(
Re‖τu(s) + SτB(s)‖20 + Rem‖τBu(s)− τBu

T (s)‖20
)
ds,

(3.2)

where Φ(t) = exp
{

Re3
∫ t

0
‖∇u‖40ds, Rem

3
∫ t

0
‖∇u‖40ds + RemRe2

∫ t

0
‖∇B‖40

}
.

Proof. The errors e = uδ1 − w, E = B
δ2 −W satisfy in variational sense

et +∇ · (uδ1uδ1 − ww
δ1

)− 1
Re

∆e + S∇ · (Bδ2
B

δ2 −WW
δ1

) +∇(pδ1 − q)

= ∇ · (τ δ1
u + Sτ δ1

B ),

Et +
1

Rem
curl curl E +∇ · (Bδ2

uδ1 −Ww
δ2

)−∇ · (uδ1B
δ2 − wW

δ2

)

= ∇ · (τ δ2
Bu − τ δ2

Bu
T ),

and ∇·e = ∇·E = 0, e(0) = E(0) = 0. Taking the inner product with (Aδ1e, SAδ2E)
we get as in (2.9) the energy estimate

1
2

d

dt

(‖e‖20 + S‖E‖20 + δ2
1‖∇e‖20 + δ2

2S‖curl E‖20
)

+
1

Re
‖∇e‖20 +

S

Rem
‖curl E‖20 +

δ2
1

Re
‖∆e‖20 +

δ2
2S

Rem
‖curl curl E‖20

+
∫

Ω

(
∇ · (uδ1uδ1 − ww)e + S∇ · (Bδ2

B
δ2 −WW )e

+ S∇ · (Bδ2
uδ1 −Ww)E − S∇ · (uδ1B

δ2 − wW )E
)
dx

= −
∫

Ω

(
(τu + SτB) · ∇e + S(τBu − τBu

T ) · ∇E
)
dx

≤ 1
2Re

‖∇e‖20 +
S

2Rem
‖curl E‖20 +

Re
2
‖τu + SτB‖20 +

Rem

2S
‖τBu − τBu

T ‖20.

Since uδ1uδ1 − ww = euδ1 + we, B
δ2

B
δ2 − WW = EB

δ2 + WE, B
δ2

uδ1 − Ww =
Euδ1 + We, uδ1B

δ2 −wW = eB
δ1 + wE, and

∫
Ω
∇ · (we)edx =

∫
Ω
∇ · (WE)Edx = 0
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we have
d

dt

(‖e‖20 + S‖E‖20 + δ2
1‖∇e‖20 + Sδ2

2‖curl E‖20
)

+
1

Re
‖∇e‖20 +

S

Rem
‖curl E‖20 +

δ2
1

Re
‖∆e‖20 +

δ2
2S

Rem
‖curl curl E‖20

≤
∫

Ω

(
− e · ∇uδ1e− S∇ · (EB

δ2)e− S∇ · (Euδ1)E + Se · ∇B
δ2

E
)
dx

+ Re‖τu + SτB‖20 + Rem‖τBu − τBu
T ‖20

≤ C
(
‖∇e‖3/2

0 ‖e‖1/2
0 ‖∇uδ1‖0 + 2S‖E‖1/2

0 ‖∇E‖1/2
0 ‖∇B

δ2‖0‖∇e‖0
+ S‖E‖1/2

0 ‖∇E‖3/2
0 ‖∇uδ1‖0

)
+ Re‖τu + SτB‖20 + Rem‖τBu − τBu

T ‖20.

Using ab ≤ εa4/3 + Cε−3b4 we obtain

d

dt

(‖e‖20 + S‖E‖20 + δ2
1‖∇e‖20 + Sδ2

2‖curl E‖20
)

+
1

Re
‖∇e‖20 +

S

Rem
‖curl E‖20 +

δ2
1

Re
‖∆e‖20 +

δ2
2S

Rem
‖curl curl E‖20

≤ C
(
Re3‖e‖20‖∇uδ1‖40 + RemRe2‖E‖20‖∇B

δ2‖40 + Rem
3‖E‖20‖∇uδ1‖40

)

+ Re‖τu + SτB‖20 + Rem‖τBu − τBu
T ‖20

and by the Gronwall inequality we deduce

‖e(t)‖20 + S‖E(t)‖20 +
∫ t

0

(
1

Re
‖∇e(s)‖20 +

S

Rem
‖curlE(s)‖20

)
ds

≤ CΨ(t)
∫ t

0

(
Re‖τu(s) + SτB(s)‖20 + Rem‖τBu(s)− τBu

T (s)‖20
)
ds,

where

Ψ(t) = exp
{

Re3

∫ t

0

‖∇uδ1‖40ds, Rem
3

∫ t

0

‖∇uδ1‖40ds + RemRe2

∫ t

0

‖∇B
δ2‖40ds

}
.

Using the stability bounds ‖∇uδ1‖0 ≤ ‖∇u‖0, ‖∇B
δ2‖0 ≤ ‖∇B‖0 we conclude the

proof.

3.3. Consistency error estimate. Here we shall give bounds on the consis-
tency errors (3.1) as δ1, δ2 → 0 in L1((0, T )× Ω) and L2((0, T )× Ω).

Proposition 3.3. Let us assume that (f, curl g) ∈ L2(0, T ;V ′). Then the fol-
lowing holds

‖τu‖L1(0,T ;L1(Ω)) ≤ 23/2δ1T
1/2Re1/2E (T ),

‖τB‖L1(0,T ;L1(Ω)) ≤ 23/2δ2T
1/2 Rem

1/2

S
E (T ), (3.3)

‖τBu‖L1(0,T ;L1(Ω)) ≤ 21/2T 1/2 1
S

(δ1Re1/2 + δ2Rem
1/2)E (T ),

where

E (T ) =
(
‖u0‖20 + S‖B0‖20 + Re‖f‖2L2(0,T ;H−1(Ω)) +

Rem

S
‖curl g‖2L2(0,T ;H−1(Ω))

)
.
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Proof. Using the stability bounds we have

‖τu‖L1(0,T ;L1(Ω)) ≤ ‖u + uδ1‖L2(0,T ;L2(Ω))‖uδ1 − u‖L2(0,T ;L2(Ω))

≤ 2‖u‖L2(0,T ;L2(Ω))

√
2δ1‖∇u‖L2(0,T ;L2(Ω)).

Similarly

‖τB‖L1(0,T ;L1(Ω)) ≤ ‖B + B
δ2‖L2(0,T ;L2(Ω))‖Bδ2 −B‖L2(0,T ;L2(Ω))

≤ 2‖B‖L2(0,T ;L2(Ω))

√
2δ2‖∇B‖L2(0,T ;L2(Ω)),

‖τBu‖L1(0,T ;L1(Ω)) ≤ ‖Bδ2 −B‖L2(Q)‖uδ1‖L2(Q) + ‖B‖L2(Q)‖uδ1 − u‖L2(Q)

≤
√

2δ2‖∇B‖L2(Q)‖u‖L2(Q) +
√

2δ1‖∇u‖L2(Q)‖B‖L2(Q).

The classical energy estimates for the MHD system (1.1) will yield now (3.3).
Assuming more regularity on (u,B) leads to the sharper bounds on the consistency

errors.
Remark 3.1. Let (u, B) ∈ L2(0, T ; H2(Ω)). Then

‖τu‖L1(0,T ;L1(Ω)) ≤ Cδ2
1 ,

‖τB‖L1(0,T ;L1(Ω)) ≤ Cδ2
2 ,

‖τBu‖L1(0,T ;L1(Ω)) ≤ C(δ2
1 + δ2

2),

where C = C(T, Re,Rem, ‖(u,B)‖L2(0,T ;L2(Ω)), ‖(u,B)‖L2(0,T ;H2(Ω))).
Proof. The result is obtained by following the proof of Proposition 3.3 and using

the bounds

‖uδ1 − u‖L2(0,T ;L2(Ω)) ≤ δ2
1‖∆u‖L2(0,T ;L2(Ω)),

‖Bδ2 −B‖L2(0,T ;L2(Ω)) ≤ δ2
2‖∆B‖L2(0,T ;L2(Ω)).

Next we estimate the L2-norms of the consistency errors τu, τB , τBu, which were
used in Theorem 3.2 to estimate the filtering errors e, E.

Proposition 3.4. Let u, B be a solution of the MHD equations (1.1) and assume
that

(u,B) ∈ L4((0, T )× Ω) ∩ L2(0, T ; H2(Ω)).

Then we have

‖τu‖L2(Q) ≤ Cδ1,

‖τB‖L2(Q) ≤ Cδ2,

‖τBu‖L2(Q) ≤ C(δ1 + δ2),

where C = C(‖(u,B)‖L4((0,T )×Ω), ‖(u,B)‖L2(0,T ;H2(Ω))).
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Proof. As in the proof of Proposition 3.3, using the stability bounds we have

‖τu‖L2(Q) ≤ 2‖u‖L4(Q)‖uδ1 − u‖L4(Q)

≤ 23/2‖u‖L4(Q)

(∫ T

0

‖uδ1 − u‖L2(Ω)‖∇(uδ1 − u)‖3L2(Ω)dt

)1/4

≤ 23/2‖u‖L4(Q)

(∫ T

0

4δ4
1‖∇u‖L2(Ω)‖∆u‖3L2(Ω)dt

)1/4

≤ 4δ1‖u‖L4(Q)‖u‖L2(0,T ;H1(Ω))‖u‖L2(0,T ;H2(Ω)).

Similarly we deduce

‖τB‖L2(Q) ≤ 4δ2‖B‖L4(Q)‖B‖L2(0,T ;H1(Ω))‖B‖L2(0,T ;H2(Ω)),

and

‖τBu‖L2(Q) ≤ ‖u‖L4(Q)‖Bδ2 −B‖L4(Q) + ‖B‖L4(Q)‖uδ2 − u‖L4(Q)

≤ 2δ2‖u‖L4(Q)‖B‖L2(0,T ;H1(Ω))‖B‖L2(0,T ;H2(Ω))

+ 2δ1‖B‖L4(Q)‖u‖L2(0,T ;H1(Ω))‖u‖L2(0,T ;H2(Ω)).

As in Remark 3.1, assuming extra regularity on (u,B) leads to the sharper bounds.
Remark 3.2. Let

(u, B) ∈ L4((0, T )× Ω) ∩ L4(0, T ; H2(Ω)).

Then

‖τu‖L2(Q) ≤ Cδ2
1 ,

‖τB‖L2(Q) ≤ Cδ2
2 ,

‖τBu‖L2(Q) ≤ C(δ2
1 + δ2

2),

where C = C(‖(u, B)‖L4((0,T )×Ω), ‖(u,B)‖L4(0,T ;H2(Ω))).
The proof repeats the one of Remark 3.1.

4. Conservation laws. As our model is some sort of a regularizing numerical
scheme, we would like to make sure that the model inherits some of the original
properties of the 3D MHD equations.

It is well known that kinetic energy and helicity are critical in the organization
of the flow.

The energy E = 1
2

∫
Ω
(v(x) · v(x) + B(x) · B(x))dx, the cross helicity HC =

1
2

∫
Ω
(v(x) ·B(x))dx and the magnetic helicity HM = 1

2

∫
Ω
(A(x) ·B(x))dx (where A is

the vector potential, B = ∇×A) are the three invariants of the MHD equations (1.1)
in the absence of kinematic viscosity and magnetic diffusivity ( 1

Re = 1
Rem

= 0).
Introduce the characteristic quantities of the model (1.6)

EADM =
1
2
[(Aδ1w,w)G1

N
+ (Aδ2W,W )G2

N
],

HC,ADM =
1
2
(Aδ1w, Aδ2W ),
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and

HM,ADM =
1
2
(Aδ2W,Aδ2)G2

N
, where Aδ2 = A−1

δ2
A.

This section is devoted to proving that these quantities are conserved by (1.6)
with the periodic boundary conditions and 1

Re = 1
Rem

= 0. Also, note that

EADM → E, HC,ADM → HC , HM,ADM → HM , as δ1,2 → 0.

Theorem 4.1 (Conservation Laws). The following conservation laws hold, ∀T >
0

EADM (T ) = EADM (0), (4.1)

HC,ADM (T ) = HC,ADM (0) + C(T ) max
i=1,2

δ2N+2
i , (4.2)

and

HM,ADM (T ) = HM,ADM (0). (4.3)

Note that the cross helicity HC,ADM of the model is not conserved exactly, but
it possesses two important properties:

HC,ADM → HC as δ1,2 → 0,

and

HC,ADM (T ) → HC,ADM (0) as N increases.

Proof. The proof follows the outline of the corresponding proof in [?].
Start by proving (4.1). Consider (1.6) with 1

Re = 1
Rem

= 0. Multiply (1.6a) by
Aδ1G

1
Nw, and multiply (1.6b) by Aδ2G

2
NW . Integrating both equations over Ω gives

1
2

d

dt
(Aδ1w,w)G1

N
= ((∇×G2

NW )×G2
NW,w)G1

N
, (4.4)

1
2

d

dt
(Aδ2W,W )G2

N
− (G2

NW · ∇G1
Nw,W )G2

N
= 0. (4.5)

Use the identity

((∇× v)× u,w) = (u · ∇v, w)− (w · ∇v, u). (4.6)

Add (4.4) and (4.5). Using (4.6) leads to

1
2

d

dt

[
(Aδ1w,w)G1

N
+ (Aδ2W,W )G2

N

]

= (G2
NW · ∇G2

NW,G1
Nw)− (G1

Nw · ∇G2
NW,G2

NW ) + (G2
NW · ∇G1

Nw,G2
NW ).

Hence

1
2

d

dt
[(Aδ1w, w)G1

N
+ (Aδ2W,W )G2

N
] = 0, (4.7)
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which proves (4.1).
To prove (4.2), multiply (1.6a) by Aδ1G

2
NW , and multiply (1.6b) by Aδ2G

1
Nw.

Integrating both equations over Ω gives

(
∂Aδ1w

∂t
, W )G2

N
+ (G1

Nw · ∇G1
Nw, W )G2

N
= 0, (4.8)

(
∂Aδ2W

∂t
,w)G1

N
+ (G1

Nw · ∇G2
NW,w)G1

N
= 0. (4.9)

Adding (4.8) and (4.9), we obtain

(
∂Aδ1w

∂t
, G2

NW ) + (
∂Aδ2W

∂t
,G1

Nw) = 0. (4.10)

It follows from Corollary 2.2 that

G1
Nw = Aδ1w + (−1)Nδ2N+2

1 ∆N+1A−N
δ1

w, (4.11)

G2
NW = Aδ2W + (−1)Nδ2N+2

2 ∆N+1A−N
δ2

W.

Then (4.10) gives

(
∂Aδ1w

∂t
,Aδ2W ) + (

∂Aδ2W

∂t
,Aδ1w) (4.12)

= (
∂Aδ1w

∂t
, (−1)N+1δ2N+2

2 ∆N+1A−N
δ2

W ) + (
∂Aδ2W

∂t
, (−1)N+1δ2N+2

1 ∆N+1A−N
δ1

w).

Hence,

d

dt
(Aδ1w, Aδ2W ) = (−1)N+1δ2N+2

2 (
∂Aδ1w

∂t
, ∆N+1A−N

δ2
W ) (4.13)

+ (−1)N+1δ2N+2
1 (

∂Aδ2W

∂t
,∆N+1A−N

δ1
w),

which proves (4.2).
Next, we prove (4.3) by multiplying (1.6b) by Aδ2G

2
NA

δ2 , and integrating over Ω.
This gives

1
2

d

dt
(∇×Aδ2A

δ2
, G2

NA
δ2) (4.14)

+ (G1
Nw · ∇G2

NW,G2
NA

δ2)− (G2
NW · ∇G1

Nw, G2
NA

δ2) = 0.

Since the cross-product of two vectors is orthogonal to each of them,

((∇×G2
NA

δ2)×G1
Nw,∇×G2

NA
δ2) = 0.

It follows from (4.15) and (4.6) that

(G1
Nw · ∇G2

NA
δ2

,∇×G2
NA

δ2) = ((∇×G2
NA

δ2) · ∇G2
NA

δ2
, G1

Nw). (4.15)

Since G2
NW = ∇×G2

NA
δ2 , we obtain from (4.14) and (4.15) that (4.3) holds.
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5. Alfvén waves. In this section we prove that our model possesses a very im-
portant property of the MHD: the ability of the magnetic field to transmit transverse
inertial waves - Alfvén waves. We follow the argument typically used to prove the
existence of Alfvén waves in MHD, see, e.g., [11].

Using the density ρ and permeability µ, we write the equations of the model (1.6)
in the form

wt +∇ · ((G1
Nw)(G1

Nw)T
δ1

) +∇pδ1 =
1
ρµ

(∇×G2
NW )×G2

NW
δ1 − ν∇× (∇× w),

(5.1a)
∂W

∂t
= ∇× ((G1

Nw)× (G2
NW ))

δ2 − η∇× (∇×W ), (5.1b)

∇ · w = 0, ∇ ·W = 0, (5.1c)

where ν = 1
Re , η = 1

Rem
.

Assume a uniform, steady magnetic field W0, perturbed by a small velocity field
w. We denote the perturbations in current density and magnetic field by jmodel and
Wp, with

∇×Wp = µjmodel. (5.2)

Also, the vorticity of the model is

ωmodel = ∇× w. (5.3)

Since G1
Nw · ∇G1

Nw is quadratic in the small quantity w, it can be neglected in
the Navier-Stokes equation (5.1a), and therefore

∂w

∂t
+∇pδ1 =

1
ρµ

(∇×G2
NWp)×G2

NW0

δ1 − ν∇× (∇× w). (5.4)

The leading order terms in the induction equation (5.1b) are

∂Wp

∂t
= ∇× (G1

Nw ×G2
NW0)

δ2 − η∇× (∇×Wp). (5.5)

Following the argument of [?] and using the approximating result of Corollary
2.2, we obtain that in the case of a perfect fluid (ν = η = 0) and in the case ν = 0,
η À 1 a transverse wave is recovered. The group velocity of the wave is equal to

ṽa = va + O(δ2N+2
1 + δ2N+2

2 ),

where va is the Alfvén velocity W0/
√

ρµ.
We conclude that our model (1.6) preserves the Alfvén waves and the group

velocity of the waves ṽa tends to the true Alfvén velocity va as the radii tend to zero.

6. Computational results. In this section we present computational results
for the ADM models of zeroth, first and second order. The convergence rates are
presented and the fidelity of the models is verified by comparing the quantities, which
are conserved in the ideal inviscid case. The computations were made for the two-
dimensional problem, hence we compared the energy and enstrophy of the models to
those of the averaged MHD.
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Consider the MHD flow in Ω = (0.5, 1.5)× (0.5, 1.5). The Reynolds number and
magnetic Reynolds number are Re = 105, Rem = 105, the final time is T = 1/4, and
the averaging radii are δ1 = δ2 = h.

Take

f =

(
1
2π sin(2πx)e−4π2t/Re − xe2t

1
2π sin(2πy)e−4π2t/Re − ye2t

)
,

∇× g =

(
et(x− (cos(πx) sin(πy) + πx sin(πx) sin(πy) + πy cos(πx) cos(πy))e−2π2t/Re)

et(−y − (sin(πx) cos(πy) + πx cos(πx) cos(πy) + πy sin(πx) sin(πy))e−2π2t/Re)

)
.

The solution to this problem is

u =

(
− cos(πx) sin(πy)e−2π2t/Re

sin(πx) cos(πy)e−2π2t/Re

)
,

p = −1
2
(cos(2πx) + cos(2πy))e−4π2t/Re,

B =
(

xet

−yet

)
.

Hence, although the theoretical results were obtained only for the periodic bound-
ary conditions, we apply the family of ADMs to the problem with Dirichlet boundary
conditions.

The results presented in the following tables are obtained by using the software
FreeFEM + +. The velocity and magnetic field are sought in the finite element
space of piecewise quadratic polynomials, and the pressure in the space of piecewise
linears. In order to draw conclusions about the convergence rate, we take the time
step k = h2. We compare the solutions (w, W ), obtained by the ADM models, to
the true solution (u,B) and the average of the true solution (ū, B̄). The second order
accuracy in approximating the true solution (u,B) is expected for ADM models of
any order, whereas the accuracy in approximating the averaged solution (ū, B̄) should
increase as the order of the model increases.

The solution, computed by the zeroth order ADM, approximates both the true
solution (u,B) and the average of the true solution (ū = (−δ2

1∆+I)−1u, B̄ = (−δ2
2∆+

I)−1B with the second order accuracy. The accuracy in approximating the averaged
solution increases as the order of the model is increased.

Hence, the computational results verify the claimed accuracy of the model.

Table 6.1
Approximating the true solution, Re = 105, Rem = 105, Zeroth Order ADM

h ‖w − u‖L2(0,T ;L2(Ω)) rate ‖W −B‖L2(0,T ;L2(Ω)) rate
1/4 0.0862904 0.0253257
1/8 0.0515562 0.7431 0.0268628 -0.085
1/16 0.0204763 1.3322 0.0132399 1.0207
1/32 0.00611337 1.7439 0.00412013 1.6841

Since the flow is not ideal (nonzero power input, nonzero viscosity/magnetic diffu-
sivity, non-periodic boundary conditions), the energy and enstrophy are not conserved.
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Table 6.2
Approximating the true solution, Re = 105, Rem = 105, First Order ADM

h ‖w − u‖L2(0,T ;L2(Ω)) rate ‖W −B‖L2(0,T ;L2(Ω)) rate
1/4 0.086748 0.0219869
1/8 0.0504853 0.781 0.0146218 0.5885
1/16 0.0196045 1.3647 0.00401043 1.8663
1/32 0.00589278 1.7342 0.00078723 2.3489

Table 6.3
Approximating the true solution, Re = 105, Rem = 105, Second Order ADM

h ‖w − u‖L2(0,T ;L2(Ω)) rate ‖W −B‖L2(0,T ;L2(Ω)) rate
1/4 0.0854318 0.0229699
1/8 0.0500093 0.7726 0.0170217 0.4324
1/16 0.0194169 1.3649 0.00472331 1.8495
1/32 0.00587995 1.7234 0.000856363 2.4635

Table 6.4
Approximating the average solution, Re = 105, Rem = 105, Zeroth Order ADM

h ‖w − ū‖L2(0,T ;L2(Ω)) rate ‖W − B̄‖L2(0,T ;L2(Ω)) rate
1/4 0.0247837 0.0253257
1/8 0.0245241 0.0152 0.0268628 -0.085
1/16 0.0131042 0.9042 0.0132399 1.0207
1/32 0.00434599 1.5923 0.00412013 1.6841

Table 6.5
Approximating the average solution, Re = 105, Rem = 105, First Order ADM

h ‖w − ū‖L2(0,T ;L2(Ω)) rate ‖W − B̄‖L2(0,T ;L2(Ω)) rate
1/4 0.0228254 0.0219869
1/8 0.015202 0.5864 0.0146218 0.5885
1/16 0.0043297 1.8119 0.00401043 1.8663
1/32 0.000867986 2.3185 0.00078723 2.3489

Table 6.6
Approximating the average solution, Re = 105, Rem = 105, Second Order ADM

h ‖w − ū‖L2(0,T ;L2(Ω)) rate ‖W − B̄‖L2(0,T ;L2(Ω)) rate
1/4 0.0236209 0.0229699
1/8 0.0172027 0.4574 0.0170217 0.4324
1/16 0.00506669 1.7635 0.00472331 1.8495
1/32 0.000956194 2.4057 0.000856363 2.4635

But we expect the energy and enstrophy of the models to approximate the energy and
enstrophy of the averaged MHD.

The enstrophy of the first and second order models approximates the enstrophy
of the averaged MHD better than the zeroth order model’s enstrophy:

The following picture shows that the graph of the models energy is hardly distin-
guishable from that of the averaged MHD:
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Fig. 6.1. ADM Enstrophy vs. averaged MHD
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Fig. 6.2. ADM Energy vs. averaged MHD

Zooming in at the final time t = 0.25 we verify that the ADM energy approximates
the averaged MHD energy better as the model’s order increases:
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Fig. 6.3. ADM Energy vs. averaged MHD: zoom in

REFERENCES

[1] N.A. Adams and S. Stolz, Deconvolution methods for subgrid-scale approximation in large-eddy
simulation, Modern Simulation Strategies for Turbulent Flow, R.T. Edwards, 2001.

[2] H. Alfvén, Existence of electromagnetic-hydrodynamic waves, Nature 150 (1942), 405.
[3] C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes

problem in arbitrary dimension, Czechoslovak Math. J. 44(119) (1994), no. 1, 109–140.
[4] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff,

Leyden, 1976.
[5] , Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press,

Boston, 1993.
[6] V. Barbu and S. S. Sritharan, Flow invariance preserving feedback controllers for the Navier-

Stokes equation, J. Math. Anal. Appl. 255 (2001), no. 1, 281–307.
[7] T. Berger, J. Kim, C. Lee, and J. Lim, Turbulent boundary layer control utilizing Lorentz force,

Phys. Fluids 12 (2000), 631649.
[8] L.C. Berselli, T. Iliescu, and W. Layton, Mathematics of large eddy simulation of turbulent

flows, Springer, Berlin, 2006.
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