APPROXIMATE DECONVOLUTION MODELS FOR
MAGNETOHYDRODYNAMICS

A. LABOVSCHIT* AND C. TRENCHEA'

Abstract. We consider the family of approximate deconvolution models (ADM) for the sim-
ulation of the large eddies in turbulent viscous, incompressible, electrically conducting flows. We
prove existence and uniqueness of solutions, we prove that the solutions to the ADM-MHD equa-
tions converge to the solution of the MHD equations in a weak sense as the averaging radii converge
to zero, and we derive a bound on the modeling error. We prove that the energy and helicity of
the models are conserved, and the models preserve the Alfvén waves. We provide the results of the
computational tests, that verify the accuracy and physical fidelity of the models.
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1. Introduction.

Magnetically conducting fluids arise in important applications including climate
change forecasting, plasma confinement, controlled thermonuclear fusion, liquid-metal
cooling of nuclear reactors, electromagnetic casting of metals, MHD sea water propul-
sion. In many of these, turbulent MHD (magnetohydrodynamics [2]) flows are typical.
The difficulties of accurately modeling and simulating turbulent flows are magnified
many times over in the MHD case. They are evinced by the more complex dynam-
ics of the flow due to the coupling of Navier-Stokes and Maxwell equations via the
Lorentz force and Ohm'’s law.

The flow of an electrically conducting fluid is affected by Lorentz forces, induced
by the interaction of electric currents and magnetic fields in the fluid. The Lorentz
forces can be used to control the flow and to attain specific engineering design goals
such as flow stabilization, suppression or delay of flow separation, reduction of near-
wall turbulence and skin friction, drag reduction and thrust generation. There is a
large body of literature dedicated to both experimental and theoretical investigations
on the influence of electromagnetic force on flows (see e.g., [19, 27, 28, 18, 39, 14, 40,
20, 35, 7]). The MHD effects arising from the macroscopic interaction of liquid metals
with applied currents and magnetic fields are exploited in metallurgical processes
to control the flow of metallic melts: the electromagnetic stirring of molten metals
[29], electromagnetic turbulence control in induction furnaces [41], electromagnetic
damping of buoyancy-driven flow during solidification [30], and the electromagnetic
shaping of ingots in continuous casting [32].

Direct numerical simulation of a 3d turbulent flow is often not computationally
economical or even feasible. On the other hand, the largest structures in the flow
(containing most of the flow’s energy) are responsible for much of the mixing and most
of the flow’s momentum transport. This led to various numerical regularizations; one
of these is Large Eddy Simulation (LES) [31], [21], [8]. It is based on the idea that
the flow can be represented by a collection of scales with different sizes, and instead
of trying to approximate all of them down to the smallest one, one defines a filter
width § > 0 and computes only the scales of size bigger than § (large scales), while
the effect of the small scales on the large scales is modeled. This reduces the number
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of degrees of freedom in a simulation and represents accurately the large structures
in the flow.

In [22] we considered the problem of modeling the motion of large structures in
a viscous, incompressible, electrically conducting, turbulent fluid. We introduced a
simple closed LES model, and performed full numerical analysis. This model can
be also addressed as zeroth order Approximate Deconvolution Model - referring to
the family of models, introduced in [1]. In this report we consider the family of the
Approximate Deconvolution models for MagnetoHydroDynamics (ADM for MHD);
we perform the numerical analysis of the models and also verify their physical fidelity.

The mathematical description of the problem proceeds as follows. Assuming the
fluid to be viscous and incompressible, the governing equations are the Navier- Stokes
and pre-Maxwell equations, coupled via the Lorentz force and Ohm'’s law (see e.g.
[34]). Let Q = (0, L)3 be the flow domain, and u(t,z), p(t,z), B(t,z) be the velocity,
pressure, and the magnetic field of the flow, driven by the velocity body force f and
magnetic field force curl g. Then u, p, B satisfy the MHD equations:

1 S
ug + V- (uu®) — §Au + §V(BQ) ~SV-(BBY) +Vp=1,
1
B: + RTcurl(curlB) + curl (B x u) = curlyg, (1.1)

V-u=0,V-B=0,
in @ = (0,T) x Q, with the initial data:
u(0,2) =wuo(z), B(0,z) = By(x) in €, (1.2)

and with periodic boundary conditions (with zero mean):
B(t, + Les) = Dt 2),i = 1,2,3, / B(t,2)dz = 0, (1.3)
Q

for & = u,ug,p, B, By, f,g.

Here Re, Ren,, and S are nondimensional constants that characterize the flow:
the Reynolds number, the magnetic Reynolds number and the coupling number, re-
spectively. For derivation of (1.1), physical interpretation and mathematical analysis,
see [10, 23, 33, 17] and the references therein.

If =01, 7% denote two local, spacing averaging operators that commute with the

differentiation, then averaging (1.1) gives the following non-closed equations for w,

B, 7% in (0,T) x
5, ——b1 1 s 7o S—s61 | s &
@+ V- () - - AT - SV - (BB )+V(§B +) = 7",

curl(curl B?) + V- (BuT™*) = V - (uBT™) = curl g%, (1.4)

_ 1
Bf2+R

Cm

vV.u =0, V-B”=0.

. . —=01 51—,
The usual closure problem which we study here arises because uu? = # @ @,

——=0 —=01 =01 —559 5. 570 .
BBT"' + BB , uBT” # w* BT, To isolate the turbulence closure problem
from the difficult problem of wall laws for near wall turbulence, we study (1.1) hence
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. . I —
(1.4) subject to (1.3). The closure problem is to replace the tensors uwu” , BBT
—70 . 51— —02 =0 _5, 590 . .
uBT™ with tensors 7 (@, u"), 7 (B, B”), Z(u,B"), respectively, depending
=3
only on @, B"” and not u, B. There are many closure models proposed in large
eddy simulation reflecting the centrality of closure in turbulence simulation. Calling

. . . _§51 =81 DY . .
w,q, W the resulting approximations to @ ,5°, B ", we are led to considering the

following model
1 —61
wt—|—V-9(w,w)—ﬂAw—Sy(VV,W)+Vq=f6

curl(curl W)+ V - 7 (w, W) = V - T (W, w) = curl g2, (1.5)

1
Wt+R

Cm

V.ow=0, V- -W=0.

With any reasonable averaging operator, the true averages ﬂ51,§52,]351 are smoother
than u, B, p. We consider the family of closure models, pioneered by Stolz and Adams
[1]. These Approximate Deconvolution Models (ADM) use the deconvolution opera-
tors G, and G%, that will be defined in Section 2. The ADM for the MHD reads

_ 5 1 5 5
w4+ V- (Ghw)(GLw)" — ﬁAw — SV (W) (GZW)T ' + Vg = 7 (1.6a)
1 5a 52
W+ e cwl(eml W) + V- (GRW)(GRuw)™) = V- (GRu) (GRW)T) (1.6b)

= curlg®,
vou=0, v-W=50 (1.6¢)

subject to w(z, 0) = @l (), W (x,0) = E? (2) and periodic boundary conditions (with

Zero means).

We shall show that the ADM MHD model (1.6) has the mathematical properties
which are expected of a model derived from the MHD equations by an averaging
operation and which are important for practical computations using (1.6). Note also,
that the case N =0 in (1.6) leads to the model discussed in [22].

The model considered can be developed for quite general averaging operators, see
e.g. [1]. The choice of averaging operator in (1.6) is a differential filter, defined as fol-
lows. Let the § > 0 denote the averaging radius, related to the finest computationally
feasible mesh. (In this report we use different lengthscales for the Navier-Stokes and

Maxwell equations). Given ¢ € LZ(Q), 56 € H%(Q) N L3(9) is the unique solution of
A58 = —208 + 8 =6 mQ, (1.7)

subject to periodic boundary conditions. Under periodic boundary conditions, this
averaging operator commutes with differentiation, and with this averaging operator,
the model (1.6) has consistency O(5?), i.e.,

01

—=9
wT ' =7 uT " 4+ 0(6,2),

7T61 —da 7,1,‘5261 2

BBT =B"’B + 0(627),
7T52 =5 75252 2 2
uBT ™ =u% BT™ 4+ 0(8;° + §5°),
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for smooth u, B. We prove that the model (1.6) has a unique, weak solution w, W
that converges in the appropriate sense w — u, W — B, as 1,2 — 0.

In Section 2 we prove the global existence and uniqueness of the solution for the
closed MHD model, after giving the notations and a definition. Section 3 treats the
questions of limit consistency of the model and verifiability. The conservation of the
kinetic energy and helicity for the approximate deconvolution model is presented in
Section 4. Section 5 shows that the model preserves the Alfén waves, with the velocity
tending to the velocity of Alfvén waves in the MHD, as the radii 0, d2 tend to zero.
Extensive computational results, demonstrated in Section 6, verify the accuracy of
the models and the physical fidelity.

2. Existence and uniqueness for the MHD LES equations.

2.1. Notations and preliminaries. Introduce the family of the approximate
deconvolution operators Gk, G%, that are used in the ADM models (1.6).

DEFINITION 2.1 (Approximate Deconvolution Operator). For a fized finite N,
define the N'th approzimate deconvolution operators G and G%; by

N
Vo= (I— A7), fori=1,2.
n=0

Note that since the differential filter As, is self adjoint, GY is also. G’ was shown
to be an O(62*?) approximate inverse to the filter operator Agil (see [12]). Finally,
it is easy to show that since A5, commutes with differentiation, so does GY;.

COROLLARY 2.2. Gﬁv is compact, positive, and is an asymptotic inverse to the
filter Agls for very smooth ¢ and as §; — 0

(Z) _ G}Vaél + (—1)N+1(5%N+2AN+1A(;1(N+1)¢7 (21)
b= G?vab n (_1)N+15§N+2AN+1A(;2(N+1)¢.

The proof of Corollary 2.2 can be found in [12] (Lemma 2.1).

LEMMA 2.3. Leti = 1,2. || g defined by [[v|q:, = (v,Giyv) is a norm on
Q, equivalent to the L?(2) norm, and (-, Jai, defined by (v,w)gi = (v,Gyw) is an
inner product on 2.

For the proof see [8].

We shall use the standard notations for function spaces in the space periodic
case (see [38]). Let H,"(€2) denote the space of functions (and their vector valued
counterparts also) that are locally in H™(R?), are periodic of period L and have zero
mean, i.e. satisfy (1.3). We recall the solenoidal space

2(Q) = {¢ € C*(Q) : ¢ periodic with zero mean,V - ¢ = 0},
and the closures of 2(12) in the usual L?(Q2) and H*({2) norms :
H={¢peHy(Q),V-¢=0in 2(Q)}
V={¢cHyQ),V-¢p=0in 2(Q)}°.
We define the operator & € Z(V,V’) by setting

(ot (w1, Wr), (ws, Wa)) :/

1 S
(Vw1 - Vwg + ——curl Wicurl W2> dx, (2.2)
Q

Re Ren



for all (w;, W;) € V . The operator & is an unbounded operator on H, with the
domain D(&) = {(w,W) € V;(Aw,AW) € H} and we denote again by & its
restriction to H.

We define also a continuous tri-linear form %, on V x V' x V by setting

-5
ol W) s W) s, W) = | (v (e wy (2.3)
Q
— ———2 ——s
-SV - (WQWlT )UJ3+V (sz? )Wg -V (UJQWlT )Wg) dx

and a continuous bilinear operator #(-) : V. — V with
(B(w1, W), (w2, Wa)) = Bo((w1, W1), (w1, W1), (wa, Wa))
for all (w;, W;) € V.
The following properties of the trilinear form %, hold (see [26, 33, 16, 13])
PBo((w1, W1), (wa, Wa), (As, w2, SAs,W2)) = 0
%0((w17W1)a(w2aW2)7(A51w37SA§2W3)) (24)
= —%o((w1, W), (w3, W), (A5, w2, SAs,W2)),
for all (w;, W;) € V. Also

| %o (w1, Wh), (wa, Wa), (w3, W3))| (2.5)

—
< Cll(wr, W) [l [ (w2, W)l 41 [| (@3, Wa™) [l

for all (’LU1,W1) e H™ (Q), (wQ,WQ) S Hm2+1(Q), (w3,W3) S Hm3(Q) and

d d
m1+m2+m3>§, ifmi;zré§foraullizl,...7d7

N

d
my +mg +ms3 > —, ifmi:§foranyofi:1,...7d.
In terms of V, H, &7, %(-) we can rewrite (1.6) as

d _
T (W, W)+ (w0, W) (1) + Z((w, W)(1) = (F curlg™), ¢ € (0,T), (2.6)
2.6
i g
(w, W) (O) = (ugl ) BOQ)’
where (f,curlg) = P(f,curlg), and P: L?(Q2) — H is the Hodge projection.
DEFINITION 2.4. Let (%51,F052) € H, fal,curlg‘s? € L2(0,T;V'). The mea-

surable functions w,W : [0,T] x Q — R? are the weak solutions of (2.6) if w,W €
L2(0,T; V)N L>(0,T; H), and w, W satisfy

t 1 SN N
/Q w(t)pd + /O /Q = Vu(r)Vé+ wlr) - V() 6~ ST) - VW (r) ¢drdr

t
= / " pd +/ / @ ¢ dudr, (2.7)

52 52
A W (t)ydx + / /Q EVW TV +w(r) - VW(r) "¢ — W(r) - Vw(r) "¢ dedr

:/E%ﬁdm—i—/ /curlg(T)ézwdxdT,
Q 0o Ja
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vt €[0,T),0,% € 2(Q).
Also, it is easy to show that for any u,v € HY(Q) with V-u = V -v = 0, the
following identity holds

Vx(uxv)=v-Vu—u-Vo. (2.8)

2.2. Stability and existence for the model. The first result states that the
weak solution of the MHD LES model (1.6) exists globally in time, for large data and
general Re, Re,,, > 0 and that it satisfies an energy equality while initial data and the
source terms are smooth enough.

THEOREM 2.5. Let 61,05 > 0 be fized. For any (17051,37052) eV and (?61, curlg’?)
€ L*(0,T; H), there exists a unique weak solution w,W to (1.6). The weak solu-
tion also belongs to L>°(0,T; H'(Q)) N L2(0,T; H*(Q)) and wy, Wy € L*((0,T) x Q).
Moreover, the following energy equality holds for t € [0,T):

t t
WAQ) +/ A (T)dr = #(0) +/ P(r)dr, (2.9)
0 0
where
5,2 1 5228 S
A (8) == [ Vw(t, ) + Fllwt )I§ + =5 IVW (I + S IW (I,
5228

_512 2 1 2 2 S 2
A () =g 1Aw o+ 7 Vel llo+ HAW(t,-)IIﬁRf%IIVW(t,-)Ilo,

(2.10)

Ren

Z(t)=(f(t),w(t)) + S(curlg(t), W(t)).

We shall use the semigroup approach proposed in [6] for the Navier-Stokes equa-
tions, based on the machinery of nonlinear differential equations of accretive type in
Banach spaces.

Let us define the modified nonlinearity Zn(-) : V. — V by setting

B(w, W) if [[(w, W)ly < N,

)Q%WW) if || (w, W[y > N. (2.11)

'%)N(wvw) = { N
(H(W’W)lll

By (2.5) we have for the case of ||(w1, W1)||1, || (w2, W2)|1 < N
(BN (w1, W1) — BN (w2, Wa), (w1 — w2, W1 — W2))|

= |%Bo((w1 — we, W1 — Wa), (w1, W1), (w1 — we, W1 — Wa))|
+ By (w2, Wa), (w1 — wa, W1 — Wa), (w1 — wa, Wi — Wa)|

s

< Off(wy — wa, Wi — Wa)|l1 2| (w1, W)l ][ (wr — W Wi — Wy I
14

< §||(w1 — wo, W1 — W) [T + COn || (w1 — wa, Wy — W2)|[3,

where v = inf{1/Re, S/Re;, }.



In the case of ||(w;, W;)||1 > N we have

(BN (w1, W) — B (we, Wa), (w1 — wa, Wi — W)

N2
- W%}O((“}l — wa, Wi — Wa), (w1, Wi), (w1 — wa, Wy — Wy))
J 1
N2 N2
(||(w1 Wh)l|? B | (ws W2)||2> Bo(wa, Wa), (wa, Wa), (w1 — wa, Wi — W)
) 1 , £

< ON|[(wy — wa, Wi — Wa) 32| (w1 — wa, Wy — Wa)lg/?
+ CNH(’LUl — Wy, W1 — Wg)”%
14

< §H(w1 — wo, W1 — Wo)||} + On || (w1 — wa, W1 — Wa)|[3.

For the case of ||(w1, W1)|l1 > N, |[(wa, Wa)|l1 < N (similar estimates are obtained
when |[(w1, W1)|l1 < N, [[(we, W2)|l1 > N) we have

(BN (w1, W) — BN (w2, Wa), (w1 — wa, W1 — Wa))|

N2
= m@o((m — wy, W1 — Wa), (w1, W1), (w1 — we, W1 — W)
N2
- <1 - ”(11)1VV1)|2) go((w% W2)7 (w27 WQ), (w1 — Wa, Wl — Wg))
) 1

< CN (w1 — wa, Wy — Wa) [} (w1 — wa, Wy — Wa) g/
+ ON||(wy —wo, W1 =Wa)||1|| (w1 —wa, W1 =W2) |1 /2

14
< §||(w1 —wa, W1 — Wa)|I} + Cn || (w1 — wa, Wy — Wa) |3

Combining all the cases above we conclude that

‘<93N(’U)1,W1) - %N(U}Q, Wg), (’U)l — ’U}Q,Wl — W2)>| (2.12)

< Sllwy — we, Wi = Wa) |13 + On || (w1 — wa, Wy — Wa)][5.

v
2
The operator Ay is continuous from V to V’. Indeed, as above we have (using (2.5)
with my = 1,m2 = O,mg =1 )

(B (w1, Wh) — B (w2, Wa), (w3, W) (2.13)
< By (w1 — wa, Wy — Wa), (w1, Wh), (w3, W3))|

+ %o ((wa, Wa), (w1 — wa, W1 — Wa), (w3, W3))|
< On|l(wr — wa, Wi — Wa)l1|[(ws, W3)]|1.

Now consider the operator I'y : D(I'y) — H defined by
I'vy =o' +%Bn, D(In)=D(H).

Here we used (2.5) with my = 1,my = 1/2,m3 = 0 and interpolation results (see e.g.
[15, 37, 13]) to show that

1B (w, W)y < Cll(w, W3 || (w, W)|1§/* < Cn |/ (w, W)[/%. (2.14)
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LEMMA 2.6. There exists an > 0 such that T'n + anI is m-accretive (mazimal
monotone) in H x H.
Proof. By (2.12) we have that

((FN + )\)(wl, Wl) - (FN + )\)(U}Q,WQ)7 (w1 — W2y, W1 - Wg)) (215)
> %H(wl —we, Wi — Wa)||2, for all (w;, W;) € D(Ty),

for A > Cn. Next we consider the operator
FIn(w, W) = (w, W)+ Bn(w, W)+ ay(w, W), forall (w,W) e D(Fn),
with
D(Fn) ={(w,W) eV, (w, W)+ By(w,W) € H}.

By (2.13) and (2.15) we see that %, is monotone, coercive and continuous from V
to V’. We infer that %y is maximal monotone from V to V'’ and the restriction to
H is maximal monotone on H with the domain D(%#y) D D(&/) (see e.g. [9, 4]).
Moreover, we have D(%xn) = D(«/). For this we use the perturbation theorem for
nonlinear m-accretive operators and split .#y into a continuous and a w-m-accretive
operator on H

Tk =03, D(Fk)=D(),

Ty =59 +Bn() +anl, D(FF)={(w,W)eV, Fi(w,W) e H}.
As seen above by (2.14) we have

9
175 (w, W)y < 511 (w0, W)llo + 1B (w, W)llo + x| (w, W)llo

C2
< el (w, W)llo + an|l(w, W)llo + 2—? for all (w, W) € D(Zy) = D(),

where 0 < e < 1.
Since Z 4+ F% = I n+anl we infer that I’y +a I with domain D(.¢7) is m-accretive
in H as claimed. 0

Proof. [Proof of Theorem 2.5] As a consequence of Lemma 2.6 (see, e.g., [4, 5]) we

have that for (17051,37062) € D(&/) and (fél,curlg‘h) € Whi([0,T], H) the equation
d —51 _

(W) + S @ WO + Bl W)0) = (7 curlg™), te 0.1, o

(w0, W)(0) = (w™, By ™),

has a unique strong solution (wy, Wx) € W1>°([0,T]; H) N L>=(0,T; D()).

By a density argument (see, e.g., [5, 26]) it can be shown that if (%51,37062) €
H and (Tsl,curlg‘sz) € L%(0,T,V') then there exist absolute continuous functions
(wn,Wx) : [0,T] — V' that satisfy (wy,Wn) € C([0,T); H) N L2(0,T : V) N
Wh2([0,T),V') and (2.16) a.e. in (0,7), where d/dt is considered in the strong
topology of V.



First, we show that D(«7) is dense in H. Indeed, if (w, W) € H we set (we, We) =
(I +eln)~ (w, W), where I is the unity operator in H. Multiplying the equation

(wsa WE) + €FN(’LU5, Ws) = (w, W)
by (we, W¢) it follows by (2.4), (2.12) that
[ (we, W23 + 20| (we, Wo) |3 < [|(w, W)][3
and by (2.11)
(we —w, We = W)||—1 = &||Te(we, We) || -1 < eN | (we, We) 1o/ (w2, W) [11/2.

Hence, {(we, W)} is bounded in H and (w., W.) — (w, W) in V' ase — 0. Therefore,
(we, W) = (w, W) in H as ¢ — 0, which implies that D(TI'y) is dense in H.

Secondly, let (%51,?062) € H and (?él,curl§‘52) € L?(0,T,V'). Then there are
sequences {(1705511737022)} C D(T'n), {(fil,curlgff)} C W11([0,T]; H) such that
(w3, Bo, ) — (™, By”") in H,
(P curlg?) — (F",curlg™) in L2(0,T;V"),
as n — oo. Let (w%, WR) € W1([0,T]; H) be the solution to problem (2.16) where
(w, W)(0) = (17021,37022) and (fgl,curlg‘b) = (?il,curlgff). By (2.15) we have

d n m n m v n m n m
%H(wN — wit, Wy = Wih)lig + 5”(“’1\1 —wit, Wy = Wih)|13
n m n m 2 —01 —5 - _
< 20N ||(why — wip, Wi = W)l + NG~ Fonrcurl(@y? —g02) 124,
for a.e. t € (0,T). By the Gronwall inequality we obtain

. __§5 590 -0
I(wh — wit, Wi = WRN(@)IIE < e*“||(@op! —w@ons, Boy,” — Bow)Is

20208ttt 5 s s, —
— [ 1@ T cunial g (R s

+

Hence

(wn (@), Wn(t)) = lim (wg (t), Wy (t))

n—oo

exists in H uniformly in ¢ on [0,7]. Similarly we obtain

t

1 n S n
(Re(IVUR OB + o (et W13 ) ds

m

el (112 + W2 + /

t
I —9 —0 .
< Cx I 8 + 1B 13 + [ (172 I+ fewtgl 9 )as
dt

T
/ }
5 6 ! 6 s
—_— s 92 —pY1 —
< O I 8 + 1B+ [ (172 I + eurlg ()12, )|

9
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Hence on a sequence we have

(why, WR) — (wn, Wy) weakly in L*(0,T;V),

d d
@(w?/, Wy) — @(WN, Wn) weakly in L*(0,T; V"),

where d(wy, Wy)/dt is considered in the sense of V’'-valued distributions on (0,T).
We proved that (wy, Wy) € C([0,T]; H) N L2(0,T; V) n WH2([0, T); V).

It remains to prove that (wy, Wy) satisfies the equation (2.16) a.e. on (0,T).
Let (w, W) € V be arbitrary but fixed. We multiply the equation

d n n n n —01
%(wN,WN) + Dy (why, Wg) = (fn ,curlgn ), a.e. te(0,T),

by (wh —w, Wg — W), integrate on (s,t) and get

5 (1l (0, WR ) ~ (W) — |y (5), WA (5)) — (r, W)[3)
< [UF (). curlgl () = Dovla, W), (R (), W) = (w0, W)dr

After we let n — oo we get

<(UJN(t)7 Wy (1) = (wn(s), Wn(s))

t—s

(wn (s). Wy (s)) — (uw, W>> (2.17)

< ; i - / <(?51 (1), curlg®? (1)) — T (w, W), (wn (1), Wx (1)) — (w, W))dr.

Let to denote a point at which (wy, Wy) is differentiable and

t0+h
(f (to), curl g°2 (ty)) = hm h/ h), curl g°2 (h))dh.
Then by (2.17) we have
d(wN,WN) —1 _s
<dt(t0) — (f ,curlg 2)(t0) + FN(U),W), (wN, WN)(tO) — (’LU,W)> <0.

Since (w, W) is arbitrary in V' and I'y is maximal monotone in V' x V'’ we conclude
that

W(to) + v (wn, W) (to) = (?61,cur1§52)(t0),

If we multiply (2.16) by (As,wn,SAs,Wn), use (2.4) and integrate in time we
obtain

29
== lleurd Wiy ()13

k) 2
(lwx @3 + SIWN@©)3) + %IIVwN(t)H% +

N | =

+/0 (i(VwN<s>||8+612IAwN<S>H3>

S
(||curl Wi (s)||2 + 622 curl curl WN(s)|(2))) ds

leurl By™ |2

52
|u061||0+5||30 18) + - IV I3 + =

Hf 8)ll-allwn (s)la +SIICur1§52(8)H71||WN(8)||1>d3

10



Using the Cauchy-Schwarz and Gronwall inequalities this implies
[(wn, Wa) (@)1 < Cs, 5, forallte (0,7),

where Cs, 5, is independent of N. In particular, for IV sufficiently large it follows from
(2.11) that By = B and (wy, Wx) = (w, W) is a solution to (1.6).

In the following we prove the uniqueness of the weak solution. Let (wq, W7) and
(wa, W3) be two solutions of the system (2.6) and set ¢ = wq — wae, ® = By — Bs.
Thus (¢, ®) is a solution to the problem

.®) + (0, B)(0) = ~B((wr, W)(1)) + B((w2, W)(1), 1€ (0,7),

(¢, ®)(0) = (0,0).

We take (As, ¢, SAs,P) as test function, integrate in space, use the incompressibility
condition (2.4) and the estimate (2.5) to get

|

(Iellg + 6:*[Vellg + SlI@|E + S62% [V 2|[5)

N | =
U

t
1 S
+ e IVelS +3T1A¢05) + 5= (IV Ol + [ Ael)
= %0((30, (I))’ (wlv Wl)v (A51 w, SA52(I)))
< C|(wr, W) [loll (¢, )11 (Vep, V) |3/
< Cs, 5[l (wr, W) lo (212 + 812 V|12 + S]| @12 + S8,2(|VD|12) .

Applying the Gronwall’s lemma we deduce that (p, ®) vanishes for all ¢ € [0, 7], and
hence the uniqueness of the solution. O

REMARK 2.1. The pressure is recovered from the weak solution via the classical
DeRham theorem (see [25]).

2.3. Regularity.

THEOREM 2.7. Let m € N, (ug, Bo) € VN H™ YQ) and (f, curlg) € L*(0,T;
H™=1(Q)). Then there exists a unique solution w, W, q to the equation (1.6) such that

(w, W) € L*>(0,T; H™(Q)) N L*(0,T; H™%(Q)),
g € L*(0,T; H™(2)).

Proof. The result is already proved when m = 0 in Theorem 2.5. For any m € N*,
we assume that
(w, W) € L>(0,T; H™(Q)) N L*(0, T; H™ () (2.18)
so it remains to prove

(D™w, D™W) € L>=(0,T; H*(Q)) N L*(0, T; H*(Q)),

11



where D™ denotes any partial derivative of total order m. We take the m*™ derivative
of (1.6) and have

(D™w), — éA(me) YD V) — SD(W VW) =D f,

1 2 2 ——02
(D" W)+ 52—V x V x (D" W) + D" (u- VW) — DWW - Vw) =V x Dig”?,
V- (D™w) =0,V - (D"W) =0,
D™w(0,) = D™, D"W(0,-) = D" By,

with periodic boundary conditions and zero mean, and the initial conditions with zero
divergence and mean. Taking As, D™ w, As, D™W as test functions we obtain

1d
57 D" wllE + 82 [VD™wl[§ + S| D™ W[ + 56,* VD" W|[5) (2.19)
1

1 m m
+ qc (VD™ w[[§ + 0| AD™w[§) + -

(VD" W[5 + 3| AD™ W |I7)

m

= / (D™fD™w+V x gD™W)dx — 2,
Q
where
%:/ (D’"(w Vw)—SD™(W -VW)) D™w + (Dm(w NW)—D™(W -Vw)) D™Wdz.
Q

Now we apply (2.5) and use the induction assumption (2.18)

=y ()

o] <m

3
> / D%w; D™ Dyw; D™ w; — SDW; D™ D;W; D™ w,
ij=1"9
— D(ywiDm_aDinDij — DaWiDm_aDiw]‘Dij

3/2 1/2 3/2 1/2
< wl22  wll 12wl + W WL 0]

1/2 1/2 3/2 1/2
e st [V 2 W I 2ol L+ W2 W D221V
Integrating (2.19) on (0,7'), using the Cauchy-Schwarz and Hoélder inequalities, and
the assumption (2.18) we obtain the desired result for w, W. We conclude the proof
mentioning that the regularity of the pressure term ¢ is obtained via classical methods,
see e.g. [36, 3]. O

3. Accuracy of the model.

We will address first the question of consistency error, i.e., we show in Theorem
3.1 that the solution of the closed model (1.6) converges to a weak solution of the
MHD equations (1.1) when 41, d2 go to zero. This proves that the model is consistent
as (517 52 — 0.
Let 7., 7B, 7By denote the model’s consistency errors

9250 -9
Ty =0T —uu, T73=B 'B°—BB, Tp,=B u" — Bu, (3.1)
where u, B is a solution of the MHD equations obtained as a limit of a subsequence
of the sequence ws, , W, .
. . -0
We will also prove in Theorem 3.2 that ||a° —w|| (0. 7.22(Q))s 1B —W ||z (0.7:12(Q))

are bounded by [|7uz2(Qr)s 17Bll22(Qr)s |7BullL2(0r)-
12



3.1. Limit consistency of the model.
THEOREM 3.1. There exist two sequences 67,65 — 0 as n — 0 such that

(thIHWéga q5?) - (u7 B7p) as 6?7 63 - Oa

where (u,B,p) € L>=(0,T; H) N L2(0,t; V) x Lz(0,T;L2(Q)) is a weak solution of
the MHD equations (1.1). The sequences {wsr }nen, {Wsp fnen converge strongly to
u, B in L3(0,T; L2()) and weakly in L2(0,T; H'(R)), respectively, while {as7 }nen
converges weakly to p in L3 (0,T; L%(Q)).

Proof. The proof follows that of Theorem 3.1 in [24], and is an easy consequence
of Theorem 3.2 and Proposition 3.4; we will sketch it for the reader’s convenience. O

2. Verifiability of the model.

THEOREM 3.2. Suppose that the true solution of (1.1) satisfies the regularity

condition (u, B) € L*(0,T;V). Thene=u" —w, E = B —w satisfy

t
1 2 S 2
et + SIEOR + [ oIV + ol B ) ds

< C‘P(t)/o (Rellmu(s) + STB(s)ll5 + RewlITpu(s) — 74" (5)I5) ds

where ®(t) = exp {R63 fot [ Vul/dds, Rep? fg |Vul/dds + RenRe? fot ||VB||3}.
Proof. The errors e =% —w, E = B” - W satisfy in variational sense

(701701 _ 01 _i . —025502 _ %1 =61
e+ V- (@t —ww ) ReAe+SV (B°B WW )+ V(@ —q)

=V (7 + S7h),
52 I 52

B+ curlewl E + V- (B0 —Ww )=V - @ B” —wW )

eII]
5, =&
=V (T8~ T8 )

and V-e=V-E =0, ¢(0) = E(0) = 0. Taking the inner product with (4s,e, SAs, E)
we get as in (2.9) the energy estimate

1d
3d (lell§ + SIElG + 631 Vells + 85 S|curl E|3)
1 S 52 528
+ g IVell + g llcul B + 2L Aclf + 22 curlcurl B}
+/ (V (@ T — ww)e + SV - (§62§62 —WWe
Q
+ 8V - (B™a" — Ww)E — SV - (@ B” — wW)E) da
= */ ((Tu + STB) -Ve + S(TBU — TBuT) . VE)d.’ﬂ
Q
S Re Rem
< eIVl + s llurl B + =l + S7al + 2 7 = a7 .
Since 1w — ww = ew’* + we §52§52 WW = E§62 + WE, §62ﬂ51 —Ww =

E@® + We, @ B” —wW = ¢B” + wE, and Jo V- (we)ede = [,V - (WE)Edz =0
13



we have
d
p (lell§ + SIEIG + 67 Vells + 563 [|curl E[|F)
2

S 52 555
Row. |curl E||Z + R—leHAeH?J + R2—em||curlcur1E||g

< / (— ¢ -Va'e— SV - (EB™)e — SV - (Eu)E + Se - V?ézE)dx
Q

1
+ el Vells +

+ Re||Tu + STBH(% + Rew||7Bu — TBuT||(2)

3/2 1/2 ) e 1/2 1/2 1w 5°
< C(Ielly *lelly 1V lo + 281 Bl * IV Ellg I VB™ loll Vello
+ SIEN 2 IVEIY*IVa™ o) + Rellru + S781E + RewlImzu — 75" I
Using ab < cat/3 + Ce—3b* we obtain
d
7 (lell§ + SIEIS + 1| Vel3 + 583 | eurl B|3)
1 S 52 538
+ %HVeH(Q) + ﬁﬂcurl E|2 + RfleHAeHg + i”curlcuﬂEH?J
. 02 —

< C(Re el 3| V7™ 8 + RewRe?| B VB™ [} + Rew®|| EI3 V™ |1})

+Rel|ry + 8757 + Rem|| 750 — 754" I3

and by the Gronwall inequality we deduce

S
Rem

eI + SIBEOIR + [ (I Telo)f + o leurl B ) ds

t
< C‘I’(t)/ (Rel|7u(s) + S75()II§ + Rem|I78u(s) — 784" (5)[I5) ds,
0
where

t t t
\If(t):exp{ReS/ ||VU51H§ds,Rem3/ ||Vﬂ51||3ds+RemRe2/ ||VB§2||§ds}.
0 0 0

Using the stability bounds ||V@o! ||y < ||Vullo, ||V§62||0 < |I[VB]Jjp we conclude the
proof. O

3.3. Consistency error estimate. Here we shall give bounds on the consis-
tency errors (3.1) as 01,02 — 0 in L*((0,T) x Q) and L?((0,7T) x ).

PROPOSITION 3.3. Let us assume that (f, curlg) € L*(0,T;V"'). Then the fol-
lowing holds

I7ull 10,7501 () < 23/26, TV/2Re'/?&(T),
Reml/2
ImBllL 0,701 Q) < 23/252T1/2T5(T), (3.3)
1
I7Bull L1 0.7:L1 (@) < 21/2T1/2§(61R61/2 + 62Rem1/2)@@(T)1
where

Ren
&(T) = <||U0||(2) +S[Bollg + Rell £ 7207, 1-1.02)) + S||CUY19||2L2(0,T;H—1(Q))> :

14



Proof. Using the stability bounds we have

I7ull 2 0.7:01 @) < 1w+ T | 20,7322 () 18 = wll 20,7522

< 2lJullz2(0,7:22(0) V201 | V|| L2 (0,712 (92)) -

Similarly

—0 —0
7Bl 0,01 9) < 1B+ B 200,020 1B — BllL2(0,1522(0))
< 2||Bllz2(0,7:12(02)) V262 [V B| 20,7 12(02))

75 _ _
ITBullLr0.7521 ) < 1B = Bllze@) I8 |lz2(q) + |1 Bllr2@) @ — ullz2(q)
< V265,5||VB|| 120 lull 2(@) + V251 | Vull L2 | Bl 22(@) -

The classical energy estimates for the MHD system (1.1) will yield now (3.3). O

Assuming more regularity on (u, B) leads to the sharper bounds on the consistency
errors.

REMARK 3.1. Let (u, B) € L*(0,T; H*(Q)). Then

I7ull 20,012 < €63,
78l L1 (0,11 () < €63,
I7BullL1 (0,1520 () < C(67 +63),

where C = C(T, Re, Rem, ||(’LL, B)HLQ(O,T;L2(Q))7 ||(u, B)HLz(O,T;H?(Q)))-

Proof. The result is obtained by following the proof of Proposition 3.3 and using
the bounds

@’ — ullr20,7:2(0)) < 61llAul r20.7:12(0))
762
IB” = Bll2o,r:L2(2)) < 85I AB||L2(0,1502(02))-

|

Next we estimate the L?-norms of the consistency errors 7., Tr, TBu, Which were
used in Theorem 3.2 to estimate the filtering errors e, .

PROPOSITION 3.4. Let u, B be a solution of the MHD equations (1.1) and assume
that
(u, B) € L*((0,T) x Q) N L2(0, T; H*()).

Then we have

I17ull2(0) < Cdy,
I8l L2(@) < Cd,
1 TBullz2(@) < C(01 + d2),

where C = C(||(U,B)HL4((01T)XQ), ||(’LL, B)||L2(0,T;H2(Q)))-
15



Proof. As in the proof of Proposition 3.3, using the stability bounds we have

ITullz2@) < 2lulla@ 7 — ullpa(q)

. 1/4
< 232l a(g) (/0 [’ — | 20|V (@ — u)||?i2‘<ﬂ>dt>

- 1/4
< 252l 1a(g) (A 4511VU|L2(Q)||AU||3i2(Q)dt>
< 451||U||L4(Q)HUHL?(O,T;Hl(Q))||UHL2(0,T;H2(Q))-
Similarly we deduce

178l L2(Q) < 402]|Bl[La(@) 1 Bll 120,311 () 1Bl 20,712 ()

and
. .
ImBullz2(@) < llulla@) /B = Bllrag) + 1 Blls % — ullrao)
< 282 ||ull 4@ | Bl p2 (0,755 () | Bl 20,13 112 (2))
+ 201 || B L3 (@) lull 2 (0, 7351 () |2l 22 (0,775 12 (2)) -
]

As in Remark 3.1, assuming extra regularity on (u, B) leads to the sharper bounds.
REMARK 3.2. Let

(u, B) € L*((0,T) x Q) N L*(0,T; H*(Q)).
Then

I7ullL2(g) < C63,
78l L2(q) < C83,
I7Bullz2(0) < C(6F + 63),

where C' = C(||(w, B)l|L1(0,7)x ), [|(w, B) ||l 20,712 (02))) -
The proof repeats the one of Remark 3.1.

4. Conservation laws. As our model is some sort of a regularizing numerical
scheme, we would like to make sure that the model inherits some of the original
properties of the 3D MHD equations.

It is well known that kinetic energy and helicity are critical in the organization
of the flow.

The energy E = 3 [,(v(z) - v(z) + B(x) - B(z))dx, the cross helicity Ho =
3 Jo(v(z) - B(z))dz and the magnetic helicity Hy = & [, (A(z) - B(z))da (where A is
the vector potential, B = V x A) are the three invariants of the MHD equations (1.1)
in the absence of kinematic viscosity and magnetic diffusivity (ﬁ = Rim =0).

Introduce the characteristic quantities of the model (1.6)

1
Bapum = 5[(As,w,0)cy, + (A5, W, W)ez .

1
Hec apm = 5(1461 w, As, W),
16



and
]. 752 *52 —1
HM’AD]y[ = §(A52I/V,A )G?\]7 where A~ = A62 A.

This section is devoted to proving that these quantities are conserved by (1.6)

with the periodic boundary conditions and é = Ri = 0. Also, note that

Eapv — E, Hoapym — He, Hyapym — Har, as 61,2 — 0.

THEOREM 4.1 (Conservation Laws). The following conservation laws hold, YT >

0
Expm(T) = Eapn(0), (4.1)
He apm(T) = He,apm(0) + C(T) max oFN*2, (4.2)
and
Hurapm(T) = Har apar(0). (4.3)

Note that the cross helicity Hc apar of the model is not conserved exactly, but
it possesses two important properties:

Heoapym — Heo as 012 — 0,
and
He apm(T) — He apa(0) as N increases.

Proof. The proof follows the outline of the corresponding proof in [?].

Start by proving (4.1). Consider (1.6) with 7= = Rim = 0. Multiply (1.6a) by

As, Ghw, and multiply (1.6b) by A;,G%W. Integrating both equations over  gives

1d

5 g Anw,wlay, = ((V x GAW) x GRW,w)an, (4.4)
1d 9 1
5%(1462”/7 Was, = (GEW - VGyw, W)z = 0. (4.5)
Use the identity
(Vxv) xu,w)=(u-Vo,w) — (w-Vo,u). (4.6)

Add (4.4) and (4.5). Using (4.6) leads to

%% [(Aélwyw)c}v + (A5, W, W)Gi,]
= (GAW - VG%W,Ghw) — (Ghw - VGAW, GZW) + (GAW - VG hw, GRAW).
Hence
1d
3 g Anw, wley, + (A, W, Wes | =0, (4.7)

17



which proves (4.1).
To prove (4.2), multiply (1.6a) by As, G% W, and multiply (1.6b) by As,GLw.
Integrating both equations over €2 gives

0As,w

( a‘; W)gs, + (Ghw - VGhw, W)gs =0, (4.8)
A

(a (;;W,w)c}v + (Gyw - VGRW, ), = 0. (4.9)

Adding (4.8) and (4.9), we obtain

9 As,w 0As,W

( 5 LGAW) + ( 5 ,GLw) =0. (4.10)
It follows from Corollary 2.2 that
Gyw = Asyw+ (—1)N TN T2ANTI AT Nqp, (4.11)

GRAW = As,W + (=1)N 3N T2 AN AN,

Then (4.10) gives

(P2 s,y + (P22 a5 ) (112)
_ (31‘(1976;1”’ (_1)N+15§N+2AN+1A§2NW) + (GA(;;W’ (_1)N+15%N+2AN+1A671NU})'
Hence,
%(A(SIMA@W) = (_1)N+15§N+2(8‘4875;w, ANTLASNYY) (4.13)
n (_1)N+16%N+2<8A;;W’AN+1A(;1Nw)’

which proves (4.2).

Next, we prove (4.3) by multiplying (1.6b) by As, G?VK(b, and integrating over (2.
This gives

1d — _
57 (V A5,8% G2 R™) (4.14)
+(Ghw - VG W, GELA™) — (GXW - VG w, GLA™) = 0.
Since the cross-product of two vectors is orthogonal to each of them,
(V x G?VK(b) x Ghw,V x G?VK52) =0.
It follows from (4.15) and (4.6) that
(Ghw- VGELA™ V x GZA™) = (V x GLA™) - VG2 A”, GLw).  (4.15)

Since G3AW =V x G?VK&Z, we obtain from (4.14) and (4.15) that (4.3) holds.
O

18



5. Alfvén waves. In this section we prove that our model possesses a very im-
portant property of the MHD: the ability of the magnetic field to transmit transverse
inertial waves - Alfvén waves. We follow the argument typically used to prove the
existence of Alfvén waves in MHD, see, e.g., [11].

Using the density p and permeability u, we write the equations of the model (1.6)
in the form

0+ V- (Ghw) (G ) + Vi = ﬁ(v X CEW) X GLW' — vV x (V x w),
(5.1a)

%f/ =V x ((GLa) x (G — 0V x (V x W), (5.1b)

Vow=0, V-W=0, (5.1c)

_ 1 . _ 1
where v = g5, 0= g

Assume a uniform, steady magnetic field Wy, perturbed by a small velocity field
w. We denote the perturbations in current density and magnetic field by joder and
Wy, with

V x Wp = ,ujmodel. (52)
Also, the vorticity of the model is
Wmodel = V x w. (5.3)

Since G w - VG w is quadratic in the small quantity w, it can be neglected in
the Navier-Stokes equation (5.1a), and therefore

61
— 4+ Vp (Vx GAW,) x GAWy  —vV x (V xw). (5.4)

1
ot pp

The leading order terms in the induction equation (5.1b) are

ow,
ot

5
=V x (Ghw x GEWo) ~ —nV x (V x W,). (5.5)
Following the argument of [?] and using the approximating result of Corollary
2.2, we obtain that in the case of a perfect fluid (v = n = 0) and in the case v = 0,

7> 1 a transverse wave is recovered. The group velocity of the wave is equal to
Uy = Vg + O(6INT2 4 52N+

where v, is the Alfvén velocity Wy /. /pp.
We conclude that our model (1.6) preserves the Alfvén waves and the group
velocity of the waves ¥, tends to the true Alfvén velocity v, as the radii tend to zero.

6. Computational results. In this section we present computational results
for the ADM models of zeroth, first and second order. The convergence rates are
presented and the fidelity of the models is verified by comparing the quantities, which
are conserved in the ideal inviscid case. The computations were made for the two-
dimensional problem, hence we compared the energy and enstrophy of the models to
those of the averaged MHD.
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Consider the MHD flow in Q = (0.5,1.5) x (0.5,1.5). The Reynolds number and
magnetic Reynolds number are Re = 10°, Re,,, = 10°, the final time is 7' = 1/4, and
the averaging radii are §; = do = h.

Take

= i sin(2mx)e 47 t/Re _ ge2t
5T sin(2my)e 47t/ Re _ o2t |
v [ e'(xz — (cos(mz) sin(my) + ma sin(wz) sin(ry) + 7y cos(rx) cos(wy))e‘z”zt/Re)
9= t(_a — (gi 3 : —272t/Re .
el (—y — (sin(mx) cos(ry) + 7 cos(rz) cos(my) + my sin(wz) sin(my))e )

The solution to this problem is

P cos(mz) sin(wy)e—ZﬂQt/Re
Sin(ﬂ'aj) COS(ﬂ'y)e‘Qﬂ'zt/Re )

1
p= —i(cos(er) + COS(27Ty))6747r2t/Re,

t
B:<m€t>.
e

Hence, although the theoretical results were obtained only for the periodic bound-
ary conditions, we apply the family of ADMs to the problem with Dirichlet boundary
conditions.

The results presented in the following tables are obtained by using the software
FreeFEM + +. The velocity and magnetic field are sought in the finite element
space of piecewise quadratic polynomials, and the pressure in the space of piecewise
linears. In order to draw conclusions about the convergence rate, we take the time
step k = h?. We compare the solutions (w, W), obtained by the ADM models, to
the true solution (u, B) and the average of the true solution (i, B). The second order
accuracy in approximating the true solution (u, B) is expected for ADM models of
any order, whereas the accuracy in approximating the averaged solution (%, B) should
increase as the order of the model increases.

The solution, computed by the zeroth order ADM, approximates both the true
solution (u, B) and the average of the true solution (i = (—67A+1) " u, B = (—63A+
I)~!B with the second order accuracy. The accuracy in approximating the averaged
solution increases as the order of the model is increased.

Hence, the computational results verify the claimed accuracy of the model.

TABLE 6.1
Approzimating the true solution, Re = 10°, Re,, = 10°, Zeroth Order ADM

h [|w — 'LLHL2(O7T;L2(Q)) rate W — BHLZ(O,T;L2(Q)) rate
1/4 0.0862904 0.0253257
1/8 0.0515562 0.7431 0.0268628 -0.085
1/16 0.0204763 1.3322 0.0132399 1.0207
1/32 0.00611337 1.7439 0.00412013 1.6841

Since the flow is not ideal (nonzero power input, nonzero viscosity /magnetic diffu-
sivity, non-periodic boundary conditions), the energy and enstrophy are not conserved.
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TABLE 6.2

Approzimating the true solution, Re = 10°, Re,, = 105, First Order ADM

h | lw—ullzzo,7:z2(0)) | rate | W — Bllrzo,r,r20)) | rate
1/4 0.086748 0.0219869
1/8 0.0504853 0.781 0.0146218 0.5885
1/16 0.0196045 1.3647 0.00401043 1.8663
1/32 0.00589278 1.7342 0.00078723 2.3489
TABLE 6.3

Approzimating the true solution, Re = 10°, Re,, = 10°, Second Order ADM

h Hw — u||L2(0$T;L2(Q)) rate ||W — B||L2(07T;L2(Q)) rate
1/4 0.0854318 0.0229699
1/8 0.0500093 0.7726 0.0170217 0.4324
1/16 0.0194169 1.3649 0.00472331 1.8495
1/32 0.00587995 1.7234 0.000856363 2.4635
TABLE 6.4

Approzimating the average solution, Re = 10°, Ren, = 10°, Zeroth Order ADM

h | lw—allzz,rz2(0) | rate | W — Bllrz,r.r20)) | rate
1/4 0.0247837 0.0253257
1/8 0.0245241 0.0152 0.0268628 -0.085
1/16 0.0131042 0.9042 0.0132399 1.0207
1/32 0.00434599 1.5923 0.00412013 1.6841
TABLE 6.5

Approzimating the average solution, Re = 10°, Ren, = 10°, First Order ADM

h | llw—=alzz201,2) | rate | |W — Bllr2o,12(0) | rate
1/4 0.0228254 0.0219869
1/8 0.015202 0.5864 0.0146218 0.5885
1/16 0.0043297 1.8119 0.00401043 1.8663
1/32 0.000867986 2.3185 0.00078723 2.3489
TABLE 6.6

Approzimating the average solution, Re = 10°, Ren, = 10°, Second Order ADM

h | llw—=alzz201,2) | rate | |W = Bllr2o1:2(0) | rate
1/4 0.0236209 0.0229699
1/8 0.0172027 0.4574 0.0170217 0.4324
1/16 0.00506669 1.7635 0.00472331 1.8495
1/32 0.000956194 2.4057 0.000856363 2.4635

But we expect the energy and enstrophy of the models to approximate the energy and

enstrophy of the averaged MHD.

The enstrophy of the first and second order models approximates the enstrophy
of the averaged MHD better than the zeroth order model’s enstrophy:
The following picture shows that the graph of the models energy is hardly distin-

guishable from that of the averaged MHD:
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Zooming in at the final time ¢ = 0.25 we verify that the ADM energy approximates
the averaged MHD energy better as the model’s order increases:
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