Worksheet 4.1 - 4.2

1. Determine whether or not \(f(x) \) is one to one function and if so, find \(f^{-1}(x) \):

 a. \(f(x) = 2x + 3 \)

 b. \(f(x) = 4 + x^3 \)

 c. \(f(x) = \sqrt{2x + 1} \). Specify the domain of \(f^{-1}(x) \)

2. Show that \(f(x) = x^2 + 4x + 9 \) is not one to one function. Modify the domain of \(f(x) \) so that it will be a one to one function (Hint: use \(f'(x) \))

3. Consider \(f(x) = \frac{2x+3}{4x-2} \)

 a. Show that \(f(x) \) is its own inverse.
b. What does the result above tell you about the graph of $f^{-1}(x)$?

4. Find the exact value of $\log_2{32}$ without using calculator:

5. Find the exact value of $\log_{\sqrt{6}}{6}$ without using calculator:

6. Show that $\log_a{\frac{6}{5}} - \log_a{300} + \log_a{125} = -\log_a{2}$

7. Solve for x if $\log_{10}(x+1) - \log_{10}(x-2) = 1$.

8. Expand the logarithm in terms of sums, differences, and multiplies of simpler logarithms:
 a. $\log\left(\frac{x^3\sqrt{x-2}}{x+4}\right)$
 b. $\log\left(\sqrt[3]{\frac{x^2}{x^3+4}}\right)$